Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import uuid
|
4 |
+
import threading
|
5 |
+
import pandas as pd
|
6 |
+
import torch
|
7 |
+
from langchain.document_loaders.csv_loader import CSVLoader
|
8 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
9 |
+
from langchain.vectorstores import FAISS
|
10 |
+
from langchain.llms import CTransformers
|
11 |
+
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
|
13 |
+
# Global model cache
|
14 |
+
MODEL_CACHE = {
|
15 |
+
"model": None,
|
16 |
+
"init_lock": threading.Lock()
|
17 |
+
}
|
18 |
+
|
19 |
+
# Create directories for user data
|
20 |
+
os.makedirs("user_data", exist_ok=True)
|
21 |
+
|
22 |
+
def initialize_model_once():
|
23 |
+
"""Initialize the model once and cache it"""
|
24 |
+
with MODEL_CACHE["init_lock"]:
|
25 |
+
if MODEL_CACHE["model"] is None:
|
26 |
+
# Path ke model local dalam repository
|
27 |
+
model_path = "llama-2-7b-chat.gguf"
|
28 |
+
MODEL_CACHE["model"] = CTransformers(
|
29 |
+
model=model_path,
|
30 |
+
model_type="llama",
|
31 |
+
max_new_tokens=512,
|
32 |
+
temperature=0.2,
|
33 |
+
top_p=0.9,
|
34 |
+
top_k=50,
|
35 |
+
repetition_penalty=1.2
|
36 |
+
)
|
37 |
+
|
38 |
+
return MODEL_CACHE["model"]
|
39 |
+
|
40 |
+
class ChatBot:
|
41 |
+
def __init__(self, session_id):
|
42 |
+
self.session_id = session_id
|
43 |
+
self.chat_history = []
|
44 |
+
self.chain = None
|
45 |
+
self.user_dir = f"user_data/{session_id}"
|
46 |
+
os.makedirs(self.user_dir, exist_ok=True)
|
47 |
+
|
48 |
+
def process_file(self, file):
|
49 |
+
if file is None:
|
50 |
+
return "Mohon upload file CSV terlebih dahulu."
|
51 |
+
|
52 |
+
try:
|
53 |
+
# Handle file from Gradio
|
54 |
+
file_path = file.name if hasattr(file, 'name') else str(file)
|
55 |
+
|
56 |
+
# Copy to user directory
|
57 |
+
user_file_path = f"{self.user_dir}/uploaded.csv"
|
58 |
+
|
59 |
+
# For debugging
|
60 |
+
print(f"Processing file: {file_path}")
|
61 |
+
print(f"Saving to: {user_file_path}")
|
62 |
+
|
63 |
+
# Verify the CSV can be loaded
|
64 |
+
try:
|
65 |
+
df = pd.read_csv(file_path)
|
66 |
+
print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns")
|
67 |
+
|
68 |
+
# Save a copy in user directory
|
69 |
+
df.to_csv(user_file_path, index=False)
|
70 |
+
except Exception as e:
|
71 |
+
return f"Error membaca CSV: {str(e)}"
|
72 |
+
|
73 |
+
# Load document
|
74 |
+
try:
|
75 |
+
loader = CSVLoader(file_path=file_path, encoding="utf-8", csv_args={
|
76 |
+
'delimiter': ','})
|
77 |
+
data = loader.load()
|
78 |
+
print(f"Documents loaded: {len(data)}")
|
79 |
+
except Exception as e:
|
80 |
+
return f"Error loading documents: {str(e)}"
|
81 |
+
|
82 |
+
# Create vector database
|
83 |
+
try:
|
84 |
+
db_path = f"{self.user_dir}/db_faiss"
|
85 |
+
embeddings = HuggingFaceEmbeddings(
|
86 |
+
model_name='sentence-transformers/all-MiniLM-L6-v2',
|
87 |
+
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
|
88 |
+
)
|
89 |
+
|
90 |
+
db = FAISS.from_documents(data, embeddings)
|
91 |
+
db.save_local(db_path)
|
92 |
+
print(f"Vector database created at {db_path}")
|
93 |
+
except Exception as e:
|
94 |
+
return f"Error creating vector database: {str(e)}"
|
95 |
+
|
96 |
+
# Create LLM and chain
|
97 |
+
try:
|
98 |
+
llm = initialize_model_once()
|
99 |
+
self.chain = ConversationalRetrievalChain.from_llm(
|
100 |
+
llm=llm,
|
101 |
+
retriever=db.as_retriever(search_kwargs={"k": 4})
|
102 |
+
)
|
103 |
+
print("Chain created successfully")
|
104 |
+
except Exception as e:
|
105 |
+
return f"Error creating chain: {str(e)}"
|
106 |
+
|
107 |
+
# Add basic file info to chat history for context
|
108 |
+
file_info = f"CSV berhasil dimuat dengan {df.shape[0]} baris dan {len(df.columns)} kolom. Kolom: {', '.join(df.columns.tolist())}"
|
109 |
+
self.chat_history.append(("System", file_info))
|
110 |
+
|
111 |
+
return "File CSV berhasil diproses! Anda dapat mulai chat dengan model Llama2."
|
112 |
+
except Exception as e:
|
113 |
+
import traceback
|
114 |
+
print(traceback.format_exc())
|
115 |
+
return f"Error pemrosesan file: {str(e)}"
|
116 |
+
|
117 |
+
def chat(self, message, history):
|
118 |
+
if self.chain is None:
|
119 |
+
return "Mohon upload file CSV terlebih dahulu."
|
120 |
+
|
121 |
+
try:
|
122 |
+
# Process the question with the chain
|
123 |
+
result = self.chain({"question": message, "chat_history": self.chat_history})
|
124 |
+
|
125 |
+
# Update internal chat history
|
126 |
+
answer = result["answer"]
|
127 |
+
self.chat_history.append((message, answer))
|
128 |
+
|
129 |
+
# Return just the answer for Gradio
|
130 |
+
return answer
|
131 |
+
except Exception as e:
|
132 |
+
import traceback
|
133 |
+
print(traceback.format_exc())
|
134 |
+
return f"Error: {str(e)}"
|
135 |
+
|
136 |
+
def cleanup(self):
|
137 |
+
"""Release resources when session ends"""
|
138 |
+
self.chain = None
|
139 |
+
|
140 |
+
def create_gradio_interface():
|
141 |
+
with gr.Blocks(title="Chat with CSV using Llama2 🦙") as interface:
|
142 |
+
# Create unique session ID for each user
|
143 |
+
session_id = gr.State(lambda: str(uuid.uuid4()))
|
144 |
+
# Create user-specific chatbot instance
|
145 |
+
chatbot_state = gr.State(lambda: None)
|
146 |
+
|
147 |
+
gr.HTML("<h1 style='text-align: center;'>Chat with CSV using Llama2 🦙</h1>")
|
148 |
+
gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV yang powerfull</h3>")
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
with gr.Column(scale=1):
|
152 |
+
file_input = gr.File(
|
153 |
+
label="Upload CSV Anda",
|
154 |
+
file_types=[".csv"]
|
155 |
+
)
|
156 |
+
process_button = gr.Button("Proses CSV")
|
157 |
+
|
158 |
+
with gr.Accordion("Informasi Model", open=False):
|
159 |
+
gr.Markdown("""
|
160 |
+
**Model**: Llama-2-7b-chat
|
161 |
+
|
162 |
+
**Fitur**:
|
163 |
+
- Dioptimalkan untuk analisis data dan percakapan
|
164 |
+
- Efisien dengan kuantisasi GGUF
|
165 |
+
- Manajemen sesi per pengguna
|
166 |
+
""")
|
167 |
+
|
168 |
+
with gr.Column(scale=2):
|
169 |
+
chatbot_interface = gr.Chatbot(
|
170 |
+
label="Riwayat Chat",
|
171 |
+
height=400
|
172 |
+
)
|
173 |
+
message_input = gr.Textbox(
|
174 |
+
label="Ketik pesan Anda",
|
175 |
+
placeholder="Tanyakan tentang data CSV Anda...",
|
176 |
+
lines=2
|
177 |
+
)
|
178 |
+
submit_button = gr.Button("Kirim")
|
179 |
+
clear_button = gr.Button("Bersihkan Chat")
|
180 |
+
|
181 |
+
# Process file handler
|
182 |
+
def handle_process_file(file, sess_id):
|
183 |
+
# Create chatbot if doesn't exist
|
184 |
+
chatbot = ChatBot(sess_id)
|
185 |
+
result = chatbot.process_file(file)
|
186 |
+
return chatbot, [(None, result)]
|
187 |
+
|
188 |
+
process_button.click(
|
189 |
+
fn=handle_process_file,
|
190 |
+
inputs=[file_input, session_id],
|
191 |
+
outputs=[chatbot_state, chatbot_interface]
|
192 |
+
)
|
193 |
+
|
194 |
+
# Chat handler - show user message immediately and then start thinking
|
195 |
+
def user_message_submitted(message, history, chatbot, sess_id):
|
196 |
+
# Add user message to history immediately
|
197 |
+
history = history + [(message, None)]
|
198 |
+
return history, "", chatbot, sess_id
|
199 |
+
|
200 |
+
def bot_response(history, chatbot, sess_id):
|
201 |
+
# Create chatbot if doesn't exist
|
202 |
+
if chatbot is None:
|
203 |
+
chatbot = ChatBot(sess_id)
|
204 |
+
history[-1] = (history[-1][0], "Mohon upload file CSV terlebih dahulu.")
|
205 |
+
return chatbot, history
|
206 |
+
|
207 |
+
user_message = history[-1][0]
|
208 |
+
response = chatbot.chat(user_message, history[:-1])
|
209 |
+
|
210 |
+
# Update the last history item with the response
|
211 |
+
history[-1] = (user_message, response)
|
212 |
+
return chatbot, history
|
213 |
+
|
214 |
+
submit_button.click(
|
215 |
+
fn=user_message_submitted,
|
216 |
+
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
|
217 |
+
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
|
218 |
+
).then(
|
219 |
+
fn=bot_response,
|
220 |
+
inputs=[chatbot_interface, chatbot_state, session_id],
|
221 |
+
outputs=[chatbot_state, chatbot_interface]
|
222 |
+
)
|
223 |
+
|
224 |
+
# Also hook up message input for pressing Enter
|
225 |
+
message_input.submit(
|
226 |
+
fn=user_message_submitted,
|
227 |
+
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
|
228 |
+
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
|
229 |
+
).then(
|
230 |
+
fn=bot_response,
|
231 |
+
inputs=[chatbot_interface, chatbot_state, session_id],
|
232 |
+
outputs=[chatbot_state, chatbot_interface]
|
233 |
+
)
|
234 |
+
|
235 |
+
# Clear chat handler
|
236 |
+
def handle_clear_chat(chatbot):
|
237 |
+
if chatbot is not None:
|
238 |
+
chatbot.chat_history = []
|
239 |
+
return chatbot, []
|
240 |
+
|
241 |
+
clear_button.click(
|
242 |
+
fn=handle_clear_chat,
|
243 |
+
inputs=[chatbot_state],
|
244 |
+
outputs=[chatbot_state, chatbot_interface]
|
245 |
+
)
|
246 |
+
|
247 |
+
return interface
|
248 |
+
|
249 |
+
# Launch the interface
|
250 |
+
if __name__ == "__main__":
|
251 |
+
demo = create_gradio_interface()
|
252 |
+
demo.launch(share=True)
|