File size: 6,460 Bytes
5381499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from typing import Tuple
import torch
from pytorch_lightning import LightningModule
from torchmetrics import MeanMetric
from transformers import (
    Wav2Vec2ForPreTraining,
    Wav2Vec2CTCTokenizer,
    Wav2Vec2FeatureExtractor,
)

from src.utils.metrics import character_error_rate, word_error_rate
from src.utils.scheduler import TriStateScheduler


class SpeechRecognizer(LightningModule):
    def __init__(
        self,
        wav2vec2: Wav2Vec2ForPreTraining,
        tokenizer: Wav2Vec2CTCTokenizer,
        feature_extractor: Wav2Vec2FeatureExtractor,
        adam_config: dict,
        tristate_scheduler_config: dict,
    ):
        super().__init__()

        self.hidden_size = wav2vec2.config.proj_codevector_dim
        self.vocab_size = tokenizer.vocab_size

        self.wav2vec2 = wav2vec2
        self.wav2vec2.freeze_feature_encoder()
        self.tokenizer = tokenizer
        self.feature_extractor = feature_extractor

        self.adam_config = adam_config
        self.tristate_scheduler_config = tristate_scheduler_config

        self.dropout = torch.nn.Dropout(0.1)
        self.fc = torch.nn.Sequential(
            torch.nn.Linear(self.hidden_size, self.hidden_size // 2),
            torch.nn.ReLU(inplace=True),
            torch.nn.Linear(self.hidden_size // 2, self.vocab_size),
        )

        self.criterion = torch.nn.CTCLoss(blank=tokenizer.pad_token_id, zero_infinity=True)

        self.train_loss = MeanMetric()

        self.save_hyperparameters(ignore=["wav2vec2", "tokenizer", "feature_extractor"])

    def forward(self, waveforms: Tuple[torch.Tensor], transcripts: Tuple[str] = None):
        # convert torch.Tensor to numpy.ndarray
        waveforms = tuple(waveform.cpu().numpy() for waveform in waveforms)

        input_values, attention_mask = self.feature_extractor(
            waveforms,
            sampling_rate=16000,
            padding=True,
            return_tensors="pt",
            return_attention_mask=True,
        ).values()

        input_values = input_values.to(self.device)
        attention_mask = attention_mask.to(self.device)

        # hidden_states.shape == (batch_size, sequence_length, hidden_size)
        hidden_states = self.wav2vec2(
            input_values,
            attention_mask=attention_mask,
        )[0]

        hidden_states = self.dropout(hidden_states)

        # logits.shape == (batch_size, sequence_length, vocab_size)
        logits = self.fc(hidden_states)

        # get the length of valids sequence
        input_lengths = self.wav2vec2._get_feat_extract_output_lengths(
            attention_mask.sum(-1)
        ).long()

        if transcripts is not None:
            # tokenize transcripts
            target_ids, target_lengths = self.tokenizer(
                transcripts,
                padding=True,
                return_length=True,
                return_attention_mask=False,
                return_tensors="pt",
            ).values()

            target_ids = target_ids.to(self.device)
            assert (
                target_ids < self.tokenizer.vocab_size
            ).all(), "target_ids is out of range"

            target_lengths = target_lengths.to(self.device)
            assert (
                target_lengths <= logits.size(1)
            ).all(), "target_lengths is out of range"

            # (batch_size, sequence_length, vocab_size) -> (sequence_length, batch_size, vocab_size)
            log_probs = torch.nn.functional.log_softmax(logits, dim=-1).transpose(0, 1)

            # compute loss
            loss = self.criterion(log_probs, target_ids, input_lengths, target_lengths)

            return loss, logits, input_lengths
        else:
            return logits, input_lengths

    @staticmethod
    def _get_predicted_ids(logits: torch.Tensor, lengths: torch.Tensor):
        # logits.shape == (batch_size, sequence_length, vocab_size)
        # lengths.shape == (batch_size, )

        # get the max value of logits
        predicted_ids = torch.argmax(logits, dim=-1)

        # remove the padding
        predicted_ids = [
            predicted_id[:length]
            for predicted_id, length in zip(predicted_ids, lengths)
        ]

        return predicted_ids

    def training_step(self, batch, batch_idx):
        transcripts, waveforms = batch

        loss = self(waveforms, transcripts)[0]

        self.train_loss(loss)

        if self.global_step % 500 == 0:
            self.log("train/loss", self.train_loss, on_step=True, on_epoch=True)

        return loss

    def on_train_epoch_end(self) -> None:
        self.train_loss.reset()

    def validation_step(self, batch, batch_idx):
        transcripts, waveforms = batch

        logits, seq_lengths = self(waveforms)

        predicted_ids = self._get_predicted_ids(logits, seq_lengths)
        predicted_texts = self.tokenizer.batch_decode(
            predicted_ids, skip_special_tokens=True
        )

        wer = word_error_rate(predicted_texts, transcripts)
        cer = character_error_rate(predicted_texts, transcripts)

        return wer, cer

    def validation_epoch_end(self, outputs):
        wer, cer = zip(*outputs)

        wer = sum(wer) / len(wer)
        cer = sum(cer) / len(cer)

        self.log("val/wer", wer, on_epoch=True)
        self.log("val/cer", cer, on_epoch=True)

    @torch.no_grad()
    def predict(self, waveforms: Tuple[torch.Tensor]):
        logits, seq_lengths = self(waveforms)

        predicted_ids = self._get_predicted_ids(logits, seq_lengths)
        predicted_texts = self.tokenizer.batch_decode(
            predicted_ids, skip_special_tokens=True
        )

        return predicted_texts

    def configure_optimizers(self):
        optimizer = torch.optim.AdamW(
            params=[
                {
                    "params": self.wav2vec2.parameters(),
                    "lr": self.adam_config["wav2vec2_lr"],
                },
                {
                    "params": self.fc.parameters(),
                    "lr": self.adam_config["classifier_lr"],
                },
            ],
            weight_decay=self.adam_config["weight_decay"],
        )

        scheduler = TriStateScheduler(optimizer, **self.tristate_scheduler_config)
        return {
            "optimizer": optimizer,
            "lr_scheduler": {
                "scheduler": scheduler,
                "interval": "step",
                "frequency": 1,
            },
        }