File size: 1,098 Bytes
133f1d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import re
from transformers import AutoTokenizer
from app.config import EMBEDDING_MODEL

class TextPreprocessor:
    """
    A simple text preprocessor for cleaning and tokenizing text.
    """

    def __init__(self, model_name: str = EMBEDDING_MODEL):
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)

    def clean_text(self, text: str) -> str:
        """
        Remove extra whitespace and control characters from text.

        Args:
            text: The text to clean.

        Returns:
            The cleaned text.
        """
        text = re.sub(r"[\s\t\n]+", " ", text)  # Normalize whitespace
        text = re.sub(r"[\x00-\x1F\x7F]", "", text)  # Remove control characters
        return text.strip()

    def count_tokens(self, text: str) -> int:
        """
        Count the number of tokens in the text using a tokenizer.

        Args:
            text: The text to tokenize.

        Returns:
            The number of tokens.
        """
        # Tokenize the text and return the length of the input IDs
        return len(self.tokenizer(text).input_ids)