import gradio as gr from huggingface_hub import InferenceClient from app.services.embedding_service import EmbeddingService from app.config import EMBEDDING_MODEL # Import from config from app.services.preprocessor import TextPreprocessor """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Initialize EmbeddingService embedding_service = EmbeddingService(model_name=EMBEDDING_MODEL, preprocessor=TextPreprocessor()) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response def get_embedding(text: str) -> list[float]: """ Endpoint to get the embedding of a text. """ try: return embedding_service.get_embedding(text) except ValueError as e: # Handle the case where the input text is too long return f"Error: {str(e)}" except Exception as e: return f"Error: {str(e)}" # Create a separate Gradio interface for the embedding endpoint embedding_iface = gr.Interface( fn=get_embedding, inputs=gr.Textbox(placeholder="Enter text here...", label="Input Text"), outputs=gr.JSON(label="Embedding"), # Use JSON output for the embedding vector title="Embedding Service", description="Get the embedding of a text using the Vietnamese Bi-Encoder.", ) """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) # Combine the interfaces demo = gr.TabbedInterface([demo, embedding_iface], ["Chatbot", "Embedding"]) if __name__ == "__main__": demo.launch()