File size: 3,543 Bytes
9f99478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import datahorse
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import io
import sys

st.title('Text to Data Analysis')

# Initialize session state for conversation history
if 'conversation' not in st.session_state:
    st.session_state.conversation = []

uploaded_file = st.file_uploader('Upload .csv data: ')


query = st.text_input('Search about data: ')

def capture_output(func):
    # Capture stdout
    old_stdout = sys.stdout
    new_stdout = io.StringIO()
    sys.stdout = new_stdout
    
    # Capture matplotlib figures
    fig = plt.figure()
    
    result = func()
    
    # Reset stdout
    sys.stdout = old_stdout
    output = new_stdout.getvalue()
    
    # Check if a plot was created
    if plt.gcf().axes:
        return fig
    elif output:
        return output
    else:
        return result

if uploaded_file is not None:

    # Add some example queries
    st.sidebar.header("Example Queries")
    st.sidebar.write("1. Show me a summary of the data")
    st.sidebar.write("2. Create a bar chart of [column_name]")
    st.sidebar.write("3. What is the average of [column_name]?")
    st.sidebar.write("4. Show me the correlation between [column1] and [column2]")
    st.sidebar.write("5. List the unique values in [column_name]")
    st.sidebar.write("6. What is the maximum value in [column_name]?")
    st.sidebar.write("7. Create a line chart of [column_name] over time")
    st.sidebar.write("8. How many missing values are in [column_name]?")
    st.sidebar.write("9. Filter rows where [column_name] is greater than [value]")
    st.sidebar.write("10. Generate a pie chart for [column_name]")


    df = datahorse.read(uploaded_file)

    col1, col2 = st.columns(2)


    if col1.button('Search it'):
        # Append user query to conversation history
        user_message = f"""

        <div style='background-color: #f0f0f0; padding: 10px; border-radius: 10px; margin: 5px 0;'>

            <strong>Me:</strong> {query}

        </div>

        """
        st.session_state.conversation.append(user_message)
        
        # Get response from datahorse
        response = capture_output(lambda: df.chat(query))
        
        st.subheader("Response:")
        
        if isinstance(response, plt.Figure):
            st.pyplot(response)
        elif isinstance(response, str):
            st.text(response)
        elif isinstance(response, pd.DataFrame):
            st.dataframe(response)
        elif response is not None:
            st.write(response)
        else:
            st.write("No output was captured.")

        # Append response to conversation history
        response_message = f"""

        <div style='background-color: #4CAF50; color: white; padding: 10px; border-radius: 10px; margin: 5px 0;'>

            <strong>Datahorse:</strong> Response displayed above

        </div>

        """
        st.session_state.conversation.append(response_message)
    # Clear conversation history
    if col2.button('Clear Conversation'):
        st.session_state.conversation = []


# Display conversation history
for message in reversed(st.session_state.conversation):
    st.markdown(message, unsafe_allow_html=True)

# Display the dataframe
if uploaded_file is not None:
    st.write("Preview of the uploaded data:")
    st.dataframe(df.head())
    
    # Display column names
    st.write("Column names in the dataset:")
    st.write(", ".join(df.columns))