import streamlit as st from pyvi.ViTokenizer import tokenize from services.generate_embedding import generate_embedding import pymongo import time from indexing import indexData, SHEET_ID, SHEET_NAME from langchain_openai import ChatOpenAI from langchain.prompts import ChatPromptTemplate import os # Connect DB client = pymongo.MongoClient( "mongodb+srv://rag:p9vojYc9fafYwxE9@rag.xswi7nq.mongodb.net/?retryWrites=true&w=majority&appName=RAG" ) db = client.rag collection = db.questionAndAnswers with st.expander('Dataset'): col1 , col2 = st.columns(2) with col1: st.markdown( """
Link question & answers
""", unsafe_allow_html=True, ) with col2: if st.button('Re-train'): placeholder = st.empty() placeholder.empty() placeholder.write('Training ...') indexData(SHEET_ID, SHEET_NAME) placeholder.write('Completed') def generateAnswer(context: str, question: str): prompt = ChatPromptTemplate.from_messages( [ ( "user","""Trả lời câu hỏi của người dùng dựa vào thông tin có trong thẻ được cho bên dưới. Nếu context không chứa những thông tin liên quan tới câu hỏi, thì đừng trả lời và chỉ trả lời là "Tôi không biết". {context} Câu hỏi: {question}""", ), ] ) messages = prompt.invoke({"context": context, "question": question}); print(messages) chat = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0.8) response = chat.invoke(messages) return response.content def stream_response(answer: str): for word in answer.split(" "): yield word + " " time.sleep(0.03) # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"], unsafe_allow_html=True) # React to user input if prompt := st.chat_input(""): tokenized_prompt = tokenize(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": tokenized_prompt}) # Display user message in chat message container with st.chat_message("user"): st.markdown(tokenized_prompt) embedding = generate_embedding(tokenized_prompt) results = collection.aggregate( [ { "$vectorSearch": { "queryVector": embedding, "path": "question_embedding", "numCandidates": 10, "limit": 10, "index": "vector_index", } } ] ) posibleQuestions = "" context = "" question = "" index = 0 for document in results: posibleQuestions = posibleQuestions + f"
  • {document['question']}
  • " context =context + "\n\n" + document['question'] + ": " + document['answer'] if index == 0: question = document["question"] index = index + 1 posibleQuestions = f"""

      Câu hỏi liên quan:

      {posibleQuestions}
    """ answer = generateAnswer(context, prompt); response = f"""

    {answer}

    {posibleQuestions} """ # Display assistant response in chat message container with st.chat_message("assistant"): st.markdown(response, unsafe_allow_html=True) # st.markdown(f"""

    Question: {question}

    """, unsafe_allow_html=True) # st.write_stream(stream_response(answer)) # st.markdown(posibleQuestions, unsafe_allow_html=True) # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response})