Spaces:
Runtime error
Runtime error
File size: 8,727 Bytes
6f52855 7ea5b16 6f52855 05c9228 889e565 05c9228 6f52855 ee45b27 6f52855 ee45b27 8df95da 6f52855 05c9228 6f52855 05c9228 8df95da 6f52855 05c9228 6f52855 1ab5c0f 6f52855 05c9228 1ab5c0f 05c9228 1ab5c0f 05c9228 6f52855 05c9228 6f52855 05c9228 6f52855 05c9228 6f52855 05c9228 6f52855 05c9228 6f52855 05c9228 1ab5c0f 05c9228 889e565 05c9228 a7feb71 6f52855 05c9228 1ab5c0f 6f52855 05c9228 6f52855 7ea5b16 6f52855 db8e0b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# This demo needs to be run from the repo folder.
# python demo/fake_gan/run.py
import os
import random
import gradio as gr
import itertools
from PIL import Image, ImageFont, ImageDraw
import DirectedDiffusion
# prompt
# boundingbox
# prompt indices for region
# number of trailing attention
# number of DD steps
# gaussian coefficient
# seed
EXAMPLES = [
[
"A painting of a tiger, on the wall in the living room",
"0.2,0.6,0.0,0.5",
"1,5",
5,
15,
1.0,
2094889,
],
[
"a dog diving into a pool in sunny day",
"0.0,0.5,0.0,0.5",
"1,2",
10,
20,
5.0,
2483964026826,
],
[
"A red cube above a blue sphere",
"0.4,0.7,0.0,0.5 0.4,0.7,0.5,1.0",
"2,3 6,7",
10,
20,
1.0,
1213698,
],
[
"The sun shining on a house",
"0.0,0.5,0.0,0.5",
"1,2",
10,
20,
1.0,
2483964026826,
],
[
"a diver swimming through a school of fish",
"0.5,1.0,0.0,0.5",
"1,2",
10,
10,
5.0,
2483964026826,
],
[
"A stone castle surrounded by lakes and trees",
"0.3,0.7,0.0,1.0",
"1,2,3",
10,
5,
1.0,
2483964026826,
],
[
"A dog hiding behind the chair",
"0.5,0.9,0.0,1.0",
"1,2",
10,
5,
2.5,
248396402123,
],
[
"A dog sitting next to a mirror",
"0.0,0.5,0.0,1.0 0.5,1.0,0.0,1.0",
"1,2 6,7",
20,
5,
1.0,
24839640268232521,
],
]
model_bundle = DirectedDiffusion.AttnEditorUtils.load_all_models(
model_path_diffusion="CompVis/stable-diffusion-v1-4"
)
# model_bundle = DirectedDiffusion.AttnEditorUtils.load_all_models(
# model_path_diffusion="../DirectedDiffusion/assets/models/stable-diffusion-v1-4"
# )
ALL_OUTPUT = {}
def directed_diffusion(
in_prompt,
in_bb,
in_token_ids,
in_slider_trailings,
in_slider_ddsteps,
in_slider_gcoef,
in_seed,
is_draw_bbox,
):
str_arg_to_val = lambda arg, f: [
[f(b) for b in a.split(",")] for a in arg.split(" ")
]
roi = str_arg_to_val(in_bb, float)
attn_editor_bundle = {
"edit_index": str_arg_to_val(in_token_ids, int),
"roi": roi,
"num_trailing_attn": [in_slider_trailings] * len(roi),
"num_affected_steps": in_slider_ddsteps,
"noise_scale": [in_slider_gcoef] * len(roi),
}
img = DirectedDiffusion.Diffusion.stablediffusion(
model_bundle,
attn_editor_bundle=attn_editor_bundle,
guidance_scale=7.5,
prompt=in_prompt,
steps=50,
seed=in_seed,
is_save_attn=False,
is_save_recons=False,
)
if is_draw_bbox and in_slider_ddsteps > 0:
for r in roi:
x0, y0, x1, y1 = [int(r_ * 512) for r_ in r]
image_editable = ImageDraw.Draw(img)
image_editable.rectangle(
xy=[x0, x1, y0, y1], outline=(255, 0, 0, 255), width=5
)
return img
def run_it(
in_prompt,
in_bb,
in_token_ids,
in_slider_trailings,
in_slider_ddsteps,
in_slider_gcoef,
in_seed,
is_draw_bbox,
is_grid_search,
progress=gr.Progress(),
):
global ALL_OUTPUT
num_affected_steps = [in_slider_ddsteps]
noise_scale = [in_slider_gcoef]
num_trailing_attn = [in_slider_trailings]
if is_grid_search:
num_affected_steps = [5, 10]
noise_scale = [1.0, 1.5, 2.5]
num_trailing_attn = [10, 20, 30, 40]
param_list = [num_affected_steps, noise_scale, num_trailing_attn]
param_list = list(itertools.product(*param_list))
results = []
progress(0, desc="Starting...")
for i, element in enumerate(progress.tqdm(param_list)):
print("=========== Arguments ============")
print("Prompt:", in_prompt)
print("BoundingBox:", in_bb)
print("Token indices:", in_token_ids)
print("Num Trialings:", element[2])
print("Num DD steps:", element[0])
print("Gaussian coef:", element[1])
print("Seed:", in_seed)
print("===================================")
img = directed_diffusion(
in_prompt=in_prompt,
in_bb=in_bb,
in_token_ids=in_token_ids,
in_slider_trailings=element[2],
in_slider_ddsteps=element[0],
in_slider_gcoef=element[1],
in_seed=in_seed,
is_draw_bbox=is_draw_bbox,
)
results.append(
(
img,
"#Trailing:{},#DDSteps:{},GaussianCoef:{}".format(
element[2], element[0], element[1]
),
)
)
return results
with gr.Blocks() as demo:
gr.Markdown(
"""
### Directed Diffusion: Direct Control of Object Placement through Attention Guidance
**\*Wan-Duo Kurt Ma, \^J. P. Lewis, \^\*W. Bastiaan Kleijn, \^Thomas Leung**
*\*Victoria University of Wellington, \^Google Research*
Let's pin the object in the prompt as you wish!
For more information, please checkout our project page ([link](https://hohonu-vicml.github.io/DirectedDiffusion.Page/)), repository ([link](https://github.com/hohonu-vicml/DirectedDiffusion)), and the paper ([link](https://arxiv.org/abs/2302.13153))
"""
)
with gr.Row(variant="panel"):
with gr.Column(variant="compact"):
in_prompt = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
).style(
container=False,
)
with gr.Row(variant="compact"):
in_bb = gr.Textbox(
label="Bounding box",
show_label=True,
max_lines=1,
placeholder="e.g., 0.1,0.5,0.3,0.6",
)
in_token_ids = gr.Textbox(
label="Token indices",
show_label=True,
max_lines=1,
placeholder="e.g., 1,2,3",
)
in_seed = gr.Number(
value=2483964026821236, label="Random seed", interactive=True
)
with gr.Row(variant="compact"):
is_grid_search = gr.Checkbox(
value=False,
label="Grid search? (If checked then sliders are ignored)",
)
is_draw_bbox = gr.Checkbox(
value=True,
label="To draw the bounding box?",
)
with gr.Row(variant="compact"):
in_slider_trailings = gr.Slider(
minimum=0, maximum=30, value=10, step=1, label="#trailings"
)
in_slider_ddsteps = gr.Slider(
minimum=0, maximum=30, value=10, step=1, label="#DDSteps"
)
in_slider_gcoef = gr.Slider(
minimum=0, maximum=10, value=1.0, step=0.1, label="GaussianCoef"
)
with gr.Row(variant="compact"):
btn_run = gr.Button("Generate image").style(full_width=True)
#btn_clean = gr.Button("Clean Gallery").style(full_width=True)
gr.Markdown(
""" Note:
1) Please click one of the examples below for quick setup.
2) if #DDsteps==0, it means the SD process runs without DD.
3) The bounding box is the tuple of four scalars representing the fractional boundary of an image: left,right,top,bottom
4) The token indices are the word positions in the prompt associated with the edited region, 1-indexed.
"""
)
with gr.Column(variant="compact"):
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")
args = [
in_prompt,
in_bb,
in_token_ids,
in_slider_trailings,
in_slider_ddsteps,
in_slider_gcoef,
in_seed,
is_draw_bbox,
is_grid_search,
]
btn_run.click(run_it, inputs=args, outputs=gallery)
#btn_clean.click(clean_gallery, outputs=gallery)
examples = gr.Examples(
examples=EXAMPLES,
inputs=args,
)
if __name__ == "__main__":
demo.queue().launch()
|