Spaces:
Running
Running
File size: 9,845 Bytes
9ab539a fbd403a 8558676 9ab539a f03f82b 9ab539a bccaf50 9ab539a bccaf50 9ab539a fbd403a 9ab539a fbd403a 9ab539a fbd403a 8558676 fbd403a 9ab539a fbd403a 9ab539a fbd403a 9ab539a fbd403a 5fc842f f03f82b fbd403a 9ab539a 505dacc 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a bccaf50 9ab539a fbd403a b5628ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import os
import shutil
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
Tasks
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
LibraryType,
fields,
Language,
AssessmentStatus
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, LOCAL_MODE
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
"""Restart the Hugging Face space"""
if LOCAL_MODE:
print("Running in local mode, skipping space restart")
return
try:
API.restart_space(repo_id=REPO_ID)
except Exception as e:
print(f"Failed to restart space: {e}")
print("Continuing without restart")
### Space initialisation
def initialize_data_directories():
"""Initialize directories for assessment data"""
# Create local directories if they don't exist
os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True)
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
# Create reports directory in the Gradio public directory to serve files
reports_dir = os.path.join("public", "reports")
os.makedirs(reports_dir, exist_ok=True)
# Copy report files to the public directory
src_reports_dir = "reports"
if os.path.exists(src_reports_dir):
for report_file in os.listdir(src_reports_dir):
src_path = os.path.join(src_reports_dir, report_file)
dst_path = os.path.join(reports_dir, report_file)
if os.path.isfile(src_path):
shutil.copy2(src_path, dst_path)
print(f"Copied report file {report_file} to public directory")
if LOCAL_MODE:
print("Running in local mode, using local directories only")
return
# Try to download from HF if not in local mode
try:
print(f"Downloading request data from {QUEUE_REPO} to {EVAL_REQUESTS_PATH}")
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset",
tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception as e:
print(f"Failed to download request data: {e}")
print("Using local data only")
try:
print(f"Downloading result data from {RESULTS_REPO} to {EVAL_RESULTS_PATH}")
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset",
tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception as e:
print(f"Failed to download result data: {e}")
print("Using local data only")
# Initialize data
initialize_data_directories()
# Load data for leaderboard
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# Load queue data
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
"""Initialize the leaderboard component"""
if dataframe is None or dataframe.empty:
# Create an empty dataframe with the expected columns
all_columns = COLS + [task.value.col_name for task in Tasks]
empty_df = pd.DataFrame(columns=all_columns)
print("Warning: Leaderboard DataFrame is empty. Using empty dataframe.")
dataframe = empty_df
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.library.name, AutoEvalColumn.license_name.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.library_type.name, type="checkboxgroup", label="Library types"),
ColumnFilter(AutoEvalColumn.language.name, type="checkboxgroup", label="Programming Language"),
ColumnFilter(
AutoEvalColumn.stars.name,
type="slider",
min=0,
max=50000,
label="GitHub Stars",
),
ColumnFilter(
AutoEvalColumn.availability.name, type="boolean", label="Show only active libraries", default=True
),
],
bool_checkboxgroup_label="Filter libraries",
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Vulnerability Leaderboard", elem_id="vulnerability-leaderboard-tab", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("π About", elem_id="about-tab", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit Library", elem_id="submit-library-tab", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Completed Assessments ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π In Progress Assessments ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Assessment Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit a library for vulnerability assessment", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
library_name_textbox = gr.Textbox(label="Library name (org/repo format)")
library_version_textbox = gr.Textbox(label="Version", placeholder="v1.0.0")
library_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in LibraryType if t != LibraryType.Unknown],
label="Library type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
language = gr.Dropdown(
choices=[i.value.name for i in Language if i != Language.Other],
label="Programming Language",
multiselect=False,
value="Python",
interactive=True,
)
framework = gr.Textbox(label="Framework/Ecosystem (e.g., PyTorch, React)")
repository_url = gr.Textbox(label="Repository URL")
submit_button = gr.Button("Submit for Assessment")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
library_name_textbox,
library_version_textbox,
repository_url,
language,
framework,
library_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
# Only schedule space restarts if not in local mode
if not LOCAL_MODE:
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
# Launch the app
demo.queue(default_concurrency_limit=40).launch(show_error=True) |