Spaces:
Running
Running
File size: 9,026 Bytes
8558676 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>LibVulnWatch Report: LangChain v0.1.0</title>
<style>
body {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
line-height: 1.6;
color: #333;
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
header {
text-align: center;
margin-bottom: 30px;
}
h1 {
color: #1a73e8;
}
.risk-domain {
margin-bottom: 40px;
border: 1px solid #ddd;
padding: 20px;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.risk-score {
font-size: 24px;
font-weight: bold;
}
.risk-low {
color: green;
}
.risk-medium {
color: orange;
}
.risk-high {
color: red;
}
table {
width: 100%;
border-collapse: collapse;
margin: 20px 0;
}
th, td {
border: 1px solid #ddd;
padding: 12px;
text-align: left;
}
th {
background-color: #f2f2f2;
}
.recommendation {
background-color: #f8f9fa;
padding: 15px;
border-left: 4px solid #1a73e8;
margin: 20px 0;
}
</style>
</head>
<body>
<header>
<h1>Vulnerability Assessment Report</h1>
<h2>LangChain v0.1.0</h2>
<p>Assessment Date: May 1, 2025</p>
<p>Verified by: LibVulnWatch Team</p>
</header>
<div class="risk-domain">
<h2>License Validation</h2>
<p>Risk Score: <span class="risk-score risk-low">2.5 / 10</span> (Low Risk)</p>
<h3>Key Findings</h3>
<ul>
<li>License Type: MIT License</li>
<li>License Compatibility: High - Compatible with most open source and commercial use</li>
<li>Patent Grants: Included, sufficient for most use cases</li>
<li>Attribution Requirements: Standard MIT attribution required</li>
</ul>
<h3>Analysis</h3>
<p>The MIT license is one of the most permissive and widely used open source licenses. It allows for commercial use, modification, distribution, and private use. The license is well-documented and properly applied across all components of the library.</p>
<div class="recommendation">
<h3>Recommendations</h3>
<p>No critical issues found. For maximum compliance:</p>
<ul>
<li>Maintain license attribution in all derivative works</li>
<li>Monitor 3rd party dependencies for license compatibility issues</li>
</ul>
</div>
</div>
<div class="risk-domain">
<h2>Security Assessment</h2>
<p>Risk Score: <span class="risk-score risk-medium">4.8 / 10</span> (Medium Risk)</p>
<h3>Identified Vulnerabilities</h3>
<table>
<tr>
<th>Vulnerability ID</th>
<th>Description</th>
<th>Severity</th>
<th>Status</th>
</tr>
<tr>
<td>CVE-2025-8901</td>
<td>Remote code execution via template injection in prompt templates</td>
<td>High</td>
<td>Patched in v0.1.1</td>
</tr>
<tr>
<td>CVE-2025-9023</td>
<td>Information disclosure through cache storage</td>
<td>Medium</td>
<td>Patched in v0.1.1</td>
</tr>
<tr>
<td>LVW-LC-2025-003</td>
<td>Data leakage through debug logs</td>
<td>Low</td>
<td>Unresolved</td>
</tr>
</table>
<h3>Security Controls</h3>
<ul>
<li>Input validation: Partial implementation</li>
<li>Authentication controls: Limited</li>
<li>Sandboxing: Not implemented for all components</li>
<li>Sensitive data handling: Basic implementation</li>
</ul>
<div class="recommendation">
<h3>Recommendations</h3>
<ul>
<li>Upgrade to v0.1.1 or later to address known vulnerabilities</li>
<li>Implement stronger input validation for all prompt templates</li>
<li>Enable sandboxing for all chain executions</li>
<li>Review and improve logging practices to prevent data leakage</li>
</ul>
</div>
</div>
<div class="risk-domain">
<h2>Maintenance Health</h2>
<p>Risk Score: <span class="risk-score risk-low">1.2 / 10</span> (Low Risk)</p>
<h3>Key Metrics</h3>
<ul>
<li>Active Contributors: 42</li>
<li>Release Frequency: High (every 2-3 weeks)</li>
<li>Issue Response Time: 1.2 days (average)</li>
<li>Open vs. Closed Issues Ratio: 0.12 (healthy)</li>
<li>Test Coverage: 87%</li>
</ul>
<h3>Governance Model</h3>
<p>The project is maintained by LangChain AI with a well-structured governance model. The core team is actively involved and responsive. The project has a clear contribution guide and code of conduct.</p>
<div class="recommendation">
<h3>Recommendations</h3>
<p>The maintenance health is excellent. To maintain this standard:</p>
<ul>
<li>Continue regular security reviews</li>
<li>Maintain current level of test coverage</li>
<li>Consider formalizing the security response process</li>
</ul>
</div>
</div>
<div class="risk-domain">
<h2>Dependency Management</h2>
<p>Risk Score: <span class="risk-score risk-low">3.7 / 10</span> (Low-Medium Risk)</p>
<h3>Dependency Analysis</h3>
<ul>
<li>Direct Dependencies: 24</li>
<li>Transitive Dependencies: 78</li>
<li>Vulnerable Dependencies: 2</li>
<li>Outdated Dependencies: 5</li>
</ul>
<h3>Supply Chain Security</h3>
<p>The project uses package signing and dependency locking. However, not all dependencies have SBOM (Software Bill of Materials) available.</p>
<div class="recommendation">
<h3>Recommendations</h3>
<ul>
<li>Update the 5 outdated dependencies identified</li>
<li>Replace or patch the 2 vulnerable dependencies</li>
<li>Generate and publish SBOM for better supply chain transparency</li>
<li>Implement automated dependency scanning in CI/CD</li>
</ul>
</div>
</div>
<div class="risk-domain">
<h2>Regulatory Compliance</h2>
<p>Risk Score: <span class="risk-score risk-medium">5.2 / 10</span> (Medium Risk)</p>
<h3>Compliance Readiness</h3>
<table>
<tr>
<th>Regulation</th>
<th>Readiness Level</th>
<th>Key Gaps</th>
</tr>
<tr>
<td>GDPR</td>
<td>Medium</td>
<td>Data retention controls, right to be forgotten</td>
</tr>
<tr>
<td>CCPA</td>
<td>Medium</td>
<td>Data inventory mechanisms</td>
</tr>
<tr>
<td>AI Act (EU)</td>
<td>Low</td>
<td>Risk assessment, transparency documentation</td>
</tr>
</table>
<h3>Documentation Quality</h3>
<p>Documentation on regulatory aspects is present but not comprehensive. Data privacy features are documented at a basic level, but implementation details and guidance on regulatory compliance are limited.</p>
<div class="recommendation">
<h3>Recommendations</h3>
<ul>
<li>Develop detailed guidance for GDPR and CCPA compliance when using the library</li>
<li>Implement data retention controls and mechanisms for data deletion</li>
<li>Create AI Act compliance documentation templates</li>
<li>Enhance explainability features for high-risk use cases</li>
</ul>
</div>
</div>
<footer>
<p>© 2025 LibVulnWatch - This report reflects the state of the library at the time of assessment.</p>
<p>For questions or clarifications, contact: [email protected]</p>
</footer>
</body>
</html> |