File size: 1,392 Bytes
9ab539a
 
 
 
c198bfa
 
 
 
 
 
 
fbd403a
9ab539a
 
fbd403a
 
9ab539a
c198bfa
9ab539a
 
c198bfa
 
 
 
 
 
 
 
9ab539a
 
 
 
 
bccaf50
 
 
 
9ab539a
fbd403a
9ab539a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os

from huggingface_hub import HfApi

# Dynamically determine if we're running in local mode
def is_local_mode():
    if os.environ.get("SPACE_AUTHOR_NAME") and os.environ.get("SPACE_REPO_NAME") and os.environ.get("HF_TOKEN") and os.environ.get("SPACE_ID"):
        return False
    return True

LOCAL_MODE = is_local_mode()

# Info to change for your repository
# ----------------------------------
# Get token from environment or use None in local mode
TOKEN = os.environ.get("HF_TOKEN") if not LOCAL_MODE else None

OWNER = "holistic-ai" # Change to your org - don't forget to create a results and request dataset, with the correct format!
# ----------------------------------

REPO_ID = f"{OWNER}/LibVulnWatch"
QUEUE_REPO = REPO_ID  # Use the same repository
RESULTS_REPO = REPO_ID  # Use the same repository

if not LOCAL_MODE:
  REPO_ID = str(os.environ.get("SPACE_ID"))
  QUEUE_REPO = REPO_ID
  RESULTS_REPO = REPO_ID

# If you setup a cache later, just change HF_HOME
CACHE_PATH=os.getenv("HF_HOME", ".")

# Local caches
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "assessment-queue")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "assessment-results")
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "assessment-queue-bk")
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "assessment-results-bk")

# Initialize API with token if available
API = HfApi(token=TOKEN)