Spaces:
Running
Running
import gradio as gr | |
from gradio.components import Dataframe | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
import os | |
from gradio.themes import Soft | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
Tasks | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
AutoEvalColumn, | |
auto_eval_column_attrs, | |
Language, | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, LOCAL_MODE | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
def restart_space(): | |
"""Restart the Hugging Face space""" | |
if LOCAL_MODE: | |
print("Running in local mode, skipping space restart") | |
return | |
try: | |
API.restart_space(repo_id=REPO_ID) | |
except Exception as e: | |
print(f"Failed to restart space: {e}") | |
print("Continuing without restart") | |
### Space initialisation | |
def initialize_data_directories(): | |
"""Initialize directories for assessment data""" | |
# Create local directories if they don't exist | |
os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True) | |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
if LOCAL_MODE: | |
print("Running in local mode, using local directories only") | |
return | |
# Try to download from HF if not in local mode | |
try: | |
print(f"Downloading request data from {QUEUE_REPO} to {EVAL_REQUESTS_PATH}") | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", | |
tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception as e: | |
print(f"Failed to download request data: {e}") | |
print("Using local data only") | |
try: | |
print(f"Downloading result data from {RESULTS_REPO} to {EVAL_RESULTS_PATH}") | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", | |
tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception as e: | |
print(f"Failed to download result data: {e}") | |
print("Using local data only") | |
# Initialize data | |
initialize_data_directories() | |
# Load data for leaderboard | |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
# Extract unique languages for filtering | |
def get_unique_languages(df): | |
"""Extract all unique individual languages from the Language column""" | |
if df.empty or auto_eval_column_attrs.language.name not in df.columns: | |
return [] | |
all_languages = set() | |
for value in df[auto_eval_column_attrs.language.name].unique(): | |
if isinstance(value, str): | |
if "/" in value: | |
languages = [lang.strip() for lang in value.split("/")] | |
all_languages.update(languages) | |
else: | |
all_languages.add(value.strip()) | |
return sorted(list(all_languages)) | |
# Create a mapping for language filtering | |
UNIQUE_LANGUAGES = get_unique_languages(LEADERBOARD_DF) | |
# Create a special column for individual language filtering | |
if not LEADERBOARD_DF.empty: | |
# Create a column that contains all individual languages as a list | |
LEADERBOARD_DF["_languages_list"] = LEADERBOARD_DF[auto_eval_column_attrs.language.name].apply( | |
lambda x: [lang.strip() for lang in str(x).split("/")] if pd.notna(x) else [] | |
) | |
# Create a text version of Active Maintenance for checkboxgroup filtering | |
LEADERBOARD_DF["_maintenance_filter"] = LEADERBOARD_DF[auto_eval_column_attrs.availability.name].apply( | |
lambda x: "Active" if x else "Inactive" | |
) | |
# Load queue data | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
rejected_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
def init_leaderboard(dataframe): | |
"""Initialize the leaderboard component""" | |
if dataframe is None or dataframe.empty: | |
# Create an empty dataframe with the expected columns | |
all_columns = COLS + [task.value.col_name for task in Tasks] | |
empty_df = pd.DataFrame(columns=pd.Index(all_columns)) | |
print("Warning: Leaderboard DataFrame is empty. Using empty dataframe.") | |
dataframe = empty_df | |
# Create filter columns list with proper typing | |
filter_columns = [] | |
# 1. Library types | |
filter_columns.append(ColumnFilter(auto_eval_column_attrs.library_type.name, type="checkboxgroup", label="Library types")) | |
# 2. Programming Language (checkboxgroup - OR filtering) | |
filter_columns.append(ColumnFilter(auto_eval_column_attrs.language.name, type="checkboxgroup", label="Programming Language")) | |
# 3. GitHub Stars | |
filter_columns.append(ColumnFilter( | |
auto_eval_column_attrs.stars.name, | |
type="slider", | |
min=0, | |
max=50000, | |
label="GitHub Stars", | |
)) | |
# 4. Maintenance Status (checkboxgroup - separate from languages) | |
filter_columns.append(ColumnFilter("_maintenance_filter", type="checkboxgroup", label="Maintenance Status")) | |
# Hide columns | |
hidden_columns = [getattr(auto_eval_column_attrs, field).name for field in AutoEvalColumn.model_fields if getattr(auto_eval_column_attrs, field).hidden] | |
hidden_columns.extend(["_languages_list", "_maintenance_filter", "_original_language"]) # Hide helper columns | |
return Leaderboard( | |
value=dataframe, | |
datatype="markdown", | |
select_columns=SelectColumns( | |
default_selection=[getattr(auto_eval_column_attrs, field).name for field in AutoEvalColumn.model_fields if getattr(auto_eval_column_attrs, field).displayed_by_default], | |
cant_deselect=[getattr(auto_eval_column_attrs, field).name for field in AutoEvalColumn.model_fields if getattr(auto_eval_column_attrs, field).never_hidden], | |
label="Select Columns to Display:", | |
), | |
search_columns=[auto_eval_column_attrs.library.name, auto_eval_column_attrs.license_name.name], | |
hide_columns=hidden_columns, | |
filter_columns=filter_columns, # type: ignore | |
bool_checkboxgroup_label="Filter libraries", | |
interactive=False, | |
) | |
demo = gr.Blocks(css=custom_css, theme=Soft()) | |
# demo = gr.Blocks(css=custom_css, theme=Soft(font=["sans-serif"], font_mono=["monospace"])) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π Vulnerability Leaderboard", elem_id="vulnerability-leaderboard-tab", id=0): | |
leaderboard = init_leaderboard(LEADERBOARD_DF) | |
with gr.TabItem("π About", elem_id="about-tab", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π Submit Library", elem_id="submit-library-tab", id=3): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Accordion( | |
f"β Completed Assessments ({len(finished_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
finished_eval_table = Dataframe( | |
value=finished_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"π In Progress Assessments ({len(running_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
running_eval_table = Dataframe( | |
value=running_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"β³ Pending Assessment Queue ({len(pending_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
pending_eval_table = Dataframe( | |
value=pending_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit a library for vulnerability assessment", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
library_name_textbox = gr.Textbox(label="Library name") | |
submit_button = gr.Button("Submit for Assessment") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
add_new_eval, | |
[ | |
library_name_textbox, | |
], | |
submission_result, | |
) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=True): | |
citation_button = gr.Code( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=14, | |
elem_id="citation-button", | |
language="yaml", | |
) | |
# Only schedule space restarts if not in local mode | |
if not LOCAL_MODE: | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
# Launch the app | |
demo.queue(default_concurrency_limit=40).launch(show_error=True) |