Spaces:
Running
Running
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
AutoEvalColumn, | |
LibraryType, | |
fields, | |
Language, | |
AssessmentStatus | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
### Space initialisation | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
def init_leaderboard(dataframe): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(AutoEvalColumn)], | |
select_columns=SelectColumns( | |
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
label="Select Columns to Display:", | |
), | |
search_columns=[AutoEvalColumn.library.name, AutoEvalColumn.license.name], | |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
filter_columns=[ | |
ColumnFilter(AutoEvalColumn.library_type.name, type="checkboxgroup", label="Library types"), | |
ColumnFilter(AutoEvalColumn.language.name, type="checkboxgroup", label="Programming Language"), | |
ColumnFilter( | |
AutoEvalColumn.stars.name, | |
type="slider", | |
min=0, | |
max=50000, | |
label="GitHub Stars", | |
), | |
ColumnFilter( | |
AutoEvalColumn.availability.name, type="boolean", label="Show only active libraries", default=True | |
), | |
], | |
bool_checkboxgroup_label="Filter libraries", | |
interactive=False, | |
) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π Vulnerability Leaderboard", elem_id="vulnerability-leaderboard-tab", id=0): | |
leaderboard = init_leaderboard(LEADERBOARD_DF) | |
with gr.TabItem("π About", elem_id="about-tab", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π Submit Library", elem_id="submit-library-tab", id=3): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Accordion( | |
f"β Completed Assessments ({len(finished_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
finished_eval_table = gr.components.Dataframe( | |
value=finished_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"π In Progress Assessments ({len(running_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
running_eval_table = gr.components.Dataframe( | |
value=running_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"β³ Pending Assessment Queue ({len(pending_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
pending_eval_table = gr.components.Dataframe( | |
value=pending_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit a library for vulnerability assessment", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
library_name_textbox = gr.Textbox(label="Library name (org/repo format)") | |
library_version_textbox = gr.Textbox(label="Version", placeholder="v1.0.0") | |
library_type = gr.Dropdown( | |
choices=[t.to_str(" : ") for t in LibraryType if t != LibraryType.Unknown], | |
label="Library type", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
with gr.Column(): | |
language = gr.Dropdown( | |
choices=[i.value.name for i in Language if i != Language.Other], | |
label="Programming Language", | |
multiselect=False, | |
value="Python", | |
interactive=True, | |
) | |
framework = gr.Textbox(label="Framework/Ecosystem (e.g., PyTorch, React)") | |
repository_url = gr.Textbox(label="Repository URL") | |
submit_button = gr.Button("Submit for Assessment") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
add_new_eval, | |
[ | |
library_name_textbox, | |
library_version_textbox, | |
repository_url, | |
language, | |
framework, | |
library_type, | |
], | |
submission_result, | |
) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() |