from dataclasses import dataclass from enum import Enum from src.about import Tasks def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False ## Leaderboard columns # Create a dictionary to hold the class attributes auto_eval_column_attrs = {} # Init auto_eval_column_attrs["library_type_symbol"] = ColumnContent("T", "str", True, never_hidden=True) auto_eval_column_attrs["library"] = ColumnContent("Library", "markdown", True, never_hidden=True) # Scores auto_eval_column_attrs["overall_risk"] = ColumnContent("Trust Score ⬇️", "number", True) for task in Tasks: auto_eval_column_attrs[task.name] = ColumnContent(task.value.col_name, "number", True) # Library information auto_eval_column_attrs["library_type"] = ColumnContent("Type", "str", False) auto_eval_column_attrs["framework"] = ColumnContent("Framework", "str", False) auto_eval_column_attrs["version"] = ColumnContent("Version", "str", False, False) auto_eval_column_attrs["language"] = ColumnContent("Language", "str", False) auto_eval_column_attrs["license_name"] = ColumnContent("License", "str", True) auto_eval_column_attrs["stars"] = ColumnContent("GitHub ⭐", "number", False) auto_eval_column_attrs["last_update"] = ColumnContent("Last Updated", "str", False) auto_eval_column_attrs["verified"] = ColumnContent("Independently Verified", "bool", False) auto_eval_column_attrs["availability"] = ColumnContent("Active Maintenance", "bool", True) auto_eval_column_attrs["report_url"] = ColumnContent("Report", "str", True) # Create the dataclass with class attributes AutoEvalColumn = type("AutoEvalColumn", (), auto_eval_column_attrs) ## For the queue columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: # Queue column library = ColumnContent("library", "markdown", True) version = ColumnContent("version", "str", True) language = ColumnContent("language", "str", True) framework = ColumnContent("framework", "str", True) library_type = ColumnContent("library_type", "str", True) status = ColumnContent("status", "str", True) ## All the library information that we might need @dataclass class LibraryDetails: name: str display_name: str = "" symbol: str = "" # emoji class LibraryType(Enum): ML = LibraryDetails(name="machine learning", symbol="🟢") LLM = LibraryDetails(name="llm framework", symbol="🔶") AGENT = LibraryDetails(name="agent framework", symbol="⭕") VIS = LibraryDetails(name="visualization", symbol="🟦") GENERAL = LibraryDetails(name="general ai", symbol="🟣") Unknown = LibraryDetails(name="", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): if "machine learning" in type or "🟢" in type: return LibraryType.ML if "llm framework" in type or "🔶" in type: return LibraryType.LLM if "agent framework" in type or "⭕" in type: return LibraryType.AGENT if "visualization" in type or "🟦" in type: return LibraryType.VIS if "general ai" in type or "🟣" in type: return LibraryType.GENERAL return LibraryType.Unknown class Language(Enum): Python = LibraryDetails("Python") JavaScript = LibraryDetails("JavaScript") TypeScript = LibraryDetails("TypeScript") Java = LibraryDetails("Java") CPP = LibraryDetails("C++") Other = LibraryDetails("Other") class AssessmentStatus(Enum): Verified = LibraryDetails("Verified") Unverified = LibraryDetails("Unverified") Disputed = LibraryDetails("Disputed") # Column selection COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] # Task columns for benchmarking - use the display column names from the Tasks enum BENCHMARK_COLS = [task.value.col_name for task in Tasks]