|
import pandas as pd |
|
import streamlit as st |
|
from util.evaluator import evaluator, write_evaluation_commentary |
|
import os |
|
|
|
|
|
examples = { |
|
'good': { |
|
'question': "What causes rainbows to appear in the sky?", |
|
'explanation': "Rainbows appear when sunlight is refracted, dispersed, and reflected inside water droplets in the atmosphere, resulting in a spectrum of light appearing in the sky." |
|
}, |
|
'bad': { |
|
'question': "What causes rainbows to appear in the sky?", |
|
'explanation': "Rainbows happen because light in the sky gets mixed up and sometimes shows colors when it's raining or when there is water around." |
|
} |
|
} |
|
|
|
|
|
def check_password(): |
|
def password_entered(): |
|
if password_input == os.getenv('PASSWORD'): |
|
st.session_state['password_correct'] = True |
|
else: |
|
st.error("Incorrect Password, please try again.") |
|
|
|
password_input = st.text_input("Enter Password:", type="password") |
|
submit_button = st.button("Submit", on_click=password_entered) |
|
|
|
if submit_button and not st.session_state.get('password_correct', False): |
|
st.error("Please enter a valid password to access the demo.") |
|
|
|
def batch_evaluate(uploaded_file): |
|
df = pd.read_csv(uploaded_file) |
|
eval = evaluator(model_name='gpt4-1106') |
|
results = [] |
|
|
|
for _, row in df.iterrows(): |
|
question = row['question'] |
|
explanation = row['explanation'] |
|
scores = eval(question, explanation) |
|
commentary = write_evaluation_commentary(scores)[["Principle", "Score"]].transpose().to_dict() |
|
results.append({**{'Question': question, 'Explanation': explanation}, **commentary}) |
|
|
|
result_df = pd.DataFrame(results) |
|
return result_df |
|
|
|
|
|
st.title('Natural Language Explanation Demo') |
|
|
|
|
|
if not st.session_state.get('password_correct', False): |
|
check_password() |
|
else: |
|
st.sidebar.success("Password Verified. Proceed with the demo.") |
|
st.header("Batch Evaluation of Questions and Explanations") |
|
uploaded_file = st.file_uploader("Upload CSV file with columns 'question' and 'explanation'", type='csv') |
|
|
|
if uploaded_file is not None: |
|
if st.button('Evaluate Explanations'): |
|
result_df = batch_evaluate(uploaded_file) |
|
st.write('### Evaluated Results') |
|
st.dataframe(result_df) |
|
|
|
csv = result_df.to_csv(index=False) |
|
st.download_button( |
|
label="Download evaluation results as CSV", |
|
data=csv, |
|
file_name='evaluated_results.csv', |
|
mime='text/csv' |
|
) |
|
|