Zekun Wu
commited on
Commit
·
f695432
1
Parent(s):
b489e1c
update
Browse files
pages/3_explanation_generation.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from util.assistants import GPTAgent
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# Function to generate explanations based on a template
|
| 8 |
+
def generate_explanations(model_name, questions, template, custom_template=None):
|
| 9 |
+
agent = GPTAgent(model_name)
|
| 10 |
+
explanations = []
|
| 11 |
+
progress_bar = st.progress(0)
|
| 12 |
+
total_questions = len(questions)
|
| 13 |
+
|
| 14 |
+
for i, question in enumerate(questions):
|
| 15 |
+
if template == "Chain of Thought":
|
| 16 |
+
prompt = f"""Generate an explanation using the Chain of Thought template for the following question:
|
| 17 |
+
|
| 18 |
+
Question: {question}
|
| 19 |
+
|
| 20 |
+
Let's think step by step.
|
| 21 |
+
|
| 22 |
+
Explanation:
|
| 23 |
+
"""
|
| 24 |
+
elif template == "Custom" and custom_template:
|
| 25 |
+
prompt = custom_template.replace("{question}", question)
|
| 26 |
+
else:
|
| 27 |
+
prompt = f"""Generate an explanation for the following question:
|
| 28 |
+
|
| 29 |
+
Question: {question}
|
| 30 |
+
|
| 31 |
+
Explanation:
|
| 32 |
+
"""
|
| 33 |
+
response = agent.invoke(prompt, temperature=0.8, max_tokens=150).strip()
|
| 34 |
+
explanations.append(response)
|
| 35 |
+
|
| 36 |
+
# Update progress bar
|
| 37 |
+
progress_bar.progress((i + 1) / total_questions)
|
| 38 |
+
|
| 39 |
+
return explanations
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# Predefined examples
|
| 43 |
+
examples = {
|
| 44 |
+
'good': {
|
| 45 |
+
'question': "What causes rainbows to appear in the sky?",
|
| 46 |
+
'explanation': "Rainbows appear when sunlight is refracted, dispersed, and reflected inside water droplets in the atmosphere, resulting in a spectrum of light appearing in the sky."
|
| 47 |
+
},
|
| 48 |
+
'bad': {
|
| 49 |
+
'question': "What causes rainbows to appear in the sky?",
|
| 50 |
+
'explanation': "Rainbows happen because light in the sky gets mixed up and sometimes shows colors when it's raining or when there is water around."
|
| 51 |
+
}
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# Function to check password
|
| 56 |
+
def check_password():
|
| 57 |
+
def password_entered():
|
| 58 |
+
if password_input == os.getenv('PASSWORD'):
|
| 59 |
+
st.session_state['password_correct'] = True
|
| 60 |
+
else:
|
| 61 |
+
st.error("Incorrect Password, please try again.")
|
| 62 |
+
|
| 63 |
+
password_input = st.text_input("Enter Password:", type="password")
|
| 64 |
+
submit_button = st.button("Submit", on_click=password_entered)
|
| 65 |
+
|
| 66 |
+
if submit_button and not st.session_state.get('password_correct', False):
|
| 67 |
+
st.error("Please enter a valid password to access the demo.")
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# Title of the application
|
| 71 |
+
st.title('Natural Language Explanation Generation')
|
| 72 |
+
|
| 73 |
+
# Sidebar description of the application
|
| 74 |
+
st.sidebar.write("""
|
| 75 |
+
### Welcome to the Natural Language Explanation Generation Demo
|
| 76 |
+
This application allows you to generate high-quality explanations for various questions using different templates. Upload a CSV of questions, select an explanation template, and generate explanations.
|
| 77 |
+
""")
|
| 78 |
+
|
| 79 |
+
# Check if password has been validated
|
| 80 |
+
if not st.session_state.get('password_correct', False):
|
| 81 |
+
check_password()
|
| 82 |
+
else:
|
| 83 |
+
st.sidebar.success("Password Verified. Proceed with the demo.")
|
| 84 |
+
|
| 85 |
+
st.write("""
|
| 86 |
+
### Instructions for Uploading CSV
|
| 87 |
+
Please upload a CSV file with the following column:
|
| 88 |
+
- `question`: The question you want explanations for.
|
| 89 |
+
|
| 90 |
+
**Example CSV Format:**
|
| 91 |
+
""")
|
| 92 |
+
|
| 93 |
+
# Display an example DataFrame
|
| 94 |
+
example_data_gen = {
|
| 95 |
+
"question": [
|
| 96 |
+
"What causes rainbows to appear in the sky?",
|
| 97 |
+
"Why is the sky blue?"
|
| 98 |
+
]
|
| 99 |
+
}
|
| 100 |
+
example_df_gen = pd.DataFrame(example_data_gen)
|
| 101 |
+
st.dataframe(example_df_gen)
|
| 102 |
+
|
| 103 |
+
uploaded_file_gen = st.file_uploader("Upload CSV file with 'question' column", type=['csv'])
|
| 104 |
+
|
| 105 |
+
if uploaded_file_gen is not None:
|
| 106 |
+
template = st.selectbox("Select an explanation template", ["Default", "Chain of Thought", "Custom"])
|
| 107 |
+
model_name = st.selectbox('Select a model:', ['gpt4-1106', 'gpt35-1106'])
|
| 108 |
+
|
| 109 |
+
custom_template = ""
|
| 110 |
+
if template == "Custom":
|
| 111 |
+
custom_template = st.text_area("Enter your custom template",
|
| 112 |
+
value="Generate an explanation for the following question:\n\nQuestion: {question}\n\nExplanation:")
|
| 113 |
+
|
| 114 |
+
if st.button('Generate Explanations'):
|
| 115 |
+
questions_df = pd.read_csv(uploaded_file_gen)
|
| 116 |
+
questions = questions_df['question'].tolist()
|
| 117 |
+
explanations = generate_explanations(model_name, questions, template, custom_template)
|
| 118 |
+
|
| 119 |
+
result_df_gen = pd.DataFrame({
|
| 120 |
+
'question': questions,
|
| 121 |
+
'explanation': explanations
|
| 122 |
+
})
|
| 123 |
+
|
| 124 |
+
st.write('### Generated Explanations')
|
| 125 |
+
st.dataframe(result_df_gen)
|
| 126 |
+
|
| 127 |
+
# Create a CSV download link
|
| 128 |
+
csv_gen = result_df_gen.to_csv(index=False)
|
| 129 |
+
st.download_button(
|
| 130 |
+
label="Download generated explanations as CSV",
|
| 131 |
+
data=csv_gen,
|
| 132 |
+
file_name='generated_explanations.csv',
|
| 133 |
+
mime='text/csv',
|
| 134 |
+
)
|