import pandas as pd import streamlit as st from util.evaluator import evaluator, write_evaluation_commentary import os # Predefined examples examples = { 'good': { 'question': "What causes rainbows to appear in the sky?", 'explanation': "Rainbows appear when sunlight is refracted, dispersed, and reflected inside water droplets in the atmosphere, resulting in a spectrum of light appearing in the sky." }, 'bad': { 'question': "What causes rainbows to appear in the sky?", 'explanation': "Rainbows happen because light in the sky gets mixed up and sometimes shows colors when it's raining or when there is water around." } } # Function to check password def check_password(): def password_entered(): if password_input == os.getenv('PASSWORD'): st.session_state['password_correct'] = True else: st.error("Incorrect Password, please try again.") password_input = st.text_input("Enter Password:", type="password") submit_button = st.button("Submit", on_click=password_entered) if submit_button and not st.session_state.get('password_correct', False): st.error("Please enter a valid password to access the demo.") def batch_evaluate(uploaded_file): df = pd.read_csv(uploaded_file) eval = evaluator(model_name='gpt4-1106') # Assuming model name is fixed for simplicity results = [] for _, row in df.iterrows(): question = row['question'] explanation = row['explanation'] scores = eval(question, explanation) commentary = write_evaluation_commentary(scores)[["Principle", "Score"]].transpose().to_dict() results.append({**{'Question': question, 'Explanation': explanation}, **commentary}) result_df = pd.DataFrame(results) return result_df # Title of the application st.title('Natural Language Explanation Demo') # Check if password has been validated if not st.session_state.get('password_correct', False): check_password() else: st.sidebar.success("Password Verified. Proceed with the demo.") st.header("Batch Evaluation of Questions and Explanations") uploaded_file = st.file_uploader("Upload CSV file with columns 'question' and 'explanation'", type='csv') if uploaded_file is not None: if st.button('Evaluate Explanations'): result_df = batch_evaluate(uploaded_file) st.write('### Evaluated Results') st.dataframe(result_df) csv = result_df.to_csv(index=False) st.download_button( label="Download evaluation results as CSV", data=csv, file_name='evaluated_results.csv', mime='text/csv' )