kleytondacosta commited on
Commit
033dd6b
1 Parent(s): 28a95a4

Update index.html

Browse files
Files changed (1) hide show
  1. index.html +19 -118
index.html CHANGED
@@ -6,7 +6,7 @@
6
  content="Empirical Benchmarking of Algorithmic Fairness in Machine Learning Models">
7
  <meta name="keywords" content="Machine Learning, Bias Mitigation, Benchmark">
8
  <meta name="viewport" content="width=device-width, initial-scale=1">
9
- <title>BMBENCH: Empirical Benchmarking of Algorithmic Fairness in Machine Learning Models</title>
10
 
11
  <link href="https://fonts.googleapis.com/css?family=Space+Grotesk"
12
  rel="stylesheet">
@@ -33,17 +33,14 @@
33
  <div class="container is-max-desktop">
34
  <div class="columns is-centered">
35
  <div class="column has-text-centered">
36
- <h1 class="title is-1 publication-title">BMBENCH: Empirical Benchmarking of Algorithmic Fairness in Machine Learning Models</h1>
37
  <div class="is-size-5 publication-authors">
38
- <span class="author-block">
39
- <a href="https://kleytondacosta.com" target="_blank">Kleyton da Costa</a><sup>1, 2</sup>,</span>
40
  <span class="author-block">
41
  <a href="https://crismunoz.github.io/" target="_blank">Cristian Munoz</a><sup>1</sup>,</span>
42
  <span class="author-block">
43
- <a href="https://sites.google.com/view/bmodenesi" target="_blank">Bernardo Modenesi</a><sup>3</sup>,
44
- </span>
45
  <span class="author-block">
46
- <a href="https://www.linkedin.com/in/franklin-cardenoso-fernandez/" target="_blank">Franklin Fernandez</a><sup>1,2</sup>,
47
  </span>
48
  <span class="author-block">
49
  <a href="https://scholar.google.com/citations?user=MuJGqNAAAAAJ&hl=en" target="_blank">Adriano Koshiyama</a><sup>1</sup>
@@ -100,7 +97,7 @@
100
  <div class="hero-body">
101
  <img src="./static/images/bmbench.png" alt="BMBENCH Image" width="100%">
102
  <h2 class="subtitle has-text-centered">
103
- <span class="dnerf">BMBENCH</span> framework and pipeline process.
104
  </h2>
105
  </div>
106
  </div>
@@ -115,14 +112,17 @@
115
  <h2 class="title is-3">Abstract</h2>
116
  <div class="content has-text-justified">
117
  <p>
118
- The development and assessment of bias mitigation methods require rigorous benchmarks.
119
- This paper introduces BMBench, a comprehensive benchmarking framework to evaluate bias
120
- mitigation strategies across multitask machine learning predictions (binary classification,
121
- multiclass classification, regression, and clustering). Our benchmark leverages state-of-the-art
122
- and proposed datasets to improve fairness research, offering a broad spectrum of fairness
123
- metrics for a robust evaluation of bias mitigation methods. We provide an open-source repository
124
- to allow researchers to test and refine their bias mitigation approaches easily,
125
- promoting advancements in the creation of fair machine learning models.
 
 
 
126
  </p>
127
  </div>
128
  </div>
@@ -131,112 +131,13 @@
131
  </section>
132
 
133
 
134
- <!-- Include Bulma CSS -->
135
- <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/css/bulma.min.css">
136
-
137
- <script src="https://cdn.jsdelivr.net/npm/[email protected]/papaparse.min.js"></script>
138
-
139
- <div class="container">
140
- <h1 class="title is-1 leaderboard-title">Leaderboard</h1>
141
- <div class="field is-grouped is-grouped-multiline">
142
- <div class="control">
143
- <div class="select">
144
- <select id="task-select">
145
- <option value="binary_classification">Binary Classification</option>
146
- <option value="multiclass">Multiclass Classification</option>
147
- <option value="regression">Regression</option>
148
- <option value="clustering">Clustering</option>
149
- </select>
150
- </div>
151
- </div>
152
- <div class="control">
153
- <div class="select">
154
- <select id="stage-select">
155
- <option value="preprocessing">Preprocessing</option>
156
- <option value="inprocessing">Inprocessing</option>
157
- <option value="postprocessing">Postprocessing</option>
158
- </select>
159
- </div>
160
- </div>
161
- </div>
162
-
163
- <div id="table-container"></div>
164
- </div>
165
-
166
- <script>
167
- function loadTable() {
168
- const taskSelect = document.getElementById('task-select');
169
- const stageSelect = document.getElementById('stage-select');
170
- const task = taskSelect.value;
171
- const stage = stageSelect.value;
172
- const csvUrl = `https://huggingface.co/datasets/holistic-ai/bias_mitigation_benchmark/resolve/main/benchmark_${task}_${stage}.csv`;
173
-
174
- // Clear previous table
175
- document.getElementById('table-container').innerHTML = '';
176
-
177
- // Fetch and process the CSV data
178
- fetch(csvUrl)
179
- .then(response => response.text())
180
- .then(csvData => {
181
- Papa.parse(csvData, {
182
- header: true,
183
- complete: function(results) {
184
- const data = results.data;
185
-
186
- // Get the headers
187
- const headers = results.meta.fields;
188
-
189
- // Create table
190
- const table = document.createElement('table');
191
- table.className = 'table is-striped is-hoverable is-fullwidth';
192
-
193
- // Create header row
194
- const thead = document.createElement('thead');
195
- const headerRow = document.createElement('tr');
196
- headers.forEach(headerText => {
197
- const th = document.createElement('th');
198
- th.appendChild(document.createTextNode(headerText));
199
- headerRow.appendChild(th);
200
- });
201
- thead.appendChild(headerRow);
202
- table.appendChild(thead);
203
-
204
- // Add data rows
205
- const tbody = document.createElement('tbody');
206
- data.forEach(rowData => {
207
- const row = document.createElement('tr');
208
- headers.forEach(header => {
209
- const td = document.createElement('td');
210
- td.appendChild(document.createTextNode(rowData[header]));
211
- row.appendChild(td);
212
- });
213
- tbody.appendChild(row);
214
- });
215
- table.appendChild(tbody);
216
-
217
- // Add table to the container
218
- document.getElementById('table-container').appendChild(table);
219
- }
220
- });
221
- })
222
- .catch(error => console.error(error));
223
- }
224
-
225
- // Load table on page load
226
- loadTable();
227
-
228
- // Add event listeners to selectors
229
- document.getElementById('task-select').addEventListener('change', loadTable);
230
- document.getElementById('stage-select').addEventListener('change', loadTable);
231
- </script>
232
-
233
  <section class="section" id="BibTeX">
234
  <div class="container is-max-desktop content">
235
  <h2 class="title">BibTeX</h2>
236
  <pre><code>@article{dacosta2025bmbench,
237
- author = {da Costa, K., Munoz, C., Modenesi, B., Fernandez, F., Koshiyama, A.},
238
- title = {BMBENCH: Empirical Benchmarking of Algorithmic Fairness in Machine Learning Models},
239
- year = {2025},
240
  url = {}
241
  }</code></pre>
242
  </div>
 
6
  content="Empirical Benchmarking of Algorithmic Fairness in Machine Learning Models">
7
  <meta name="keywords" content="Machine Learning, Bias Mitigation, Benchmark">
8
  <meta name="viewport" content="width=device-width, initial-scale=1">
9
+ <title>Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics</title>
10
 
11
  <link href="https://fonts.googleapis.com/css?family=Space+Grotesk"
12
  rel="stylesheet">
 
33
  <div class="container is-max-desktop">
34
  <div class="columns is-centered">
35
  <div class="column has-text-centered">
36
+ <h1 class="title is-1 publication-title">Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics</h1>
37
  <div class="is-size-5 publication-authors">
 
 
38
  <span class="author-block">
39
  <a href="https://crismunoz.github.io/" target="_blank">Cristian Munoz</a><sup>1</sup>,</span>
40
  <span class="author-block">
41
+ <a href="https://kleytondacosta.com" target="_blank">Kleyton da Costa</a><sup>1, 2</sup>,</span>
 
42
  <span class="author-block">
43
+ <a href="https://sites.google.com/view/bmodenesi" target="_blank">Bernardo Modenesi</a><sup>3</sup>,
44
  </span>
45
  <span class="author-block">
46
  <a href="https://scholar.google.com/citations?user=MuJGqNAAAAAJ&hl=en" target="_blank">Adriano Koshiyama</a><sup>1</sup>
 
97
  <div class="hero-body">
98
  <img src="./static/images/bmbench.png" alt="BMBENCH Image" width="100%">
99
  <h2 class="subtitle has-text-centered">
100
+ <span class="dnerf">EAMEX</span> framework and pipeline process.
101
  </h2>
102
  </div>
103
  </div>
 
112
  <h2 class="title is-3">Abstract</h2>
113
  <div class="content has-text-justified">
114
  <p>
115
+ The rapid integration of artificial intelligence (AI) into various industries has introduced new challenges in
116
+ governance and regulation, particularly regarding the understanding of complex AI systems. A critical demand
117
+ from decision-makers is the ability to explain the results of machine learning models, which is essential for
118
+ fostering trust and ensuring ethical AI practices. In this paper, we develop six distinct model-agnostic metrics
119
+ designed to quantify the extent to which model predictions can be explained. These metrics measure different aspects
120
+ of model explainability, ranging from local importance, global importance, and surrogate predictions, allowing for a
121
+ comprehensive evaluation of how models generate their outputs. Furthermore, by computing our metrics, we can rank
122
+ models in terms of explainability criteria such as importance concentration and consistency, prediction fluctuation,
123
+ and surrogate fidelity and stability, offering a valuable tool for selecting models based not only on accuracy but
124
+ also on transparency. We demonstrate the practical utility of these metrics on classification and regression tasks,
125
+ and integrate these metrics into an existing Python package for public use.
126
  </p>
127
  </div>
128
  </div>
 
131
  </section>
132
 
133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
  <section class="section" id="BibTeX">
135
  <div class="container is-max-desktop content">
136
  <h2 class="title">BibTeX</h2>
137
  <pre><code>@article{dacosta2025bmbench,
138
+ author = {Munoz, C., da Costa, K., Modenesi, B., Koshiyama, A.},
139
+ title = {Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics},
140
+ year = {2024},
141
  url = {}
142
  }</code></pre>
143
  </div>