kleytondacosta
commited on
Commit
•
033dd6b
1
Parent(s):
28a95a4
Update index.html
Browse files- index.html +19 -118
index.html
CHANGED
@@ -6,7 +6,7 @@
|
|
6 |
content="Empirical Benchmarking of Algorithmic Fairness in Machine Learning Models">
|
7 |
<meta name="keywords" content="Machine Learning, Bias Mitigation, Benchmark">
|
8 |
<meta name="viewport" content="width=device-width, initial-scale=1">
|
9 |
-
<title>
|
10 |
|
11 |
<link href="https://fonts.googleapis.com/css?family=Space+Grotesk"
|
12 |
rel="stylesheet">
|
@@ -33,17 +33,14 @@
|
|
33 |
<div class="container is-max-desktop">
|
34 |
<div class="columns is-centered">
|
35 |
<div class="column has-text-centered">
|
36 |
-
<h1 class="title is-1 publication-title">
|
37 |
<div class="is-size-5 publication-authors">
|
38 |
-
<span class="author-block">
|
39 |
-
<a href="https://kleytondacosta.com" target="_blank">Kleyton da Costa</a><sup>1, 2</sup>,</span>
|
40 |
<span class="author-block">
|
41 |
<a href="https://crismunoz.github.io/" target="_blank">Cristian Munoz</a><sup>1</sup>,</span>
|
42 |
<span class="author-block">
|
43 |
-
<a href="https://
|
44 |
-
</span>
|
45 |
<span class="author-block">
|
46 |
-
<a href="https://
|
47 |
</span>
|
48 |
<span class="author-block">
|
49 |
<a href="https://scholar.google.com/citations?user=MuJGqNAAAAAJ&hl=en" target="_blank">Adriano Koshiyama</a><sup>1</sup>
|
@@ -100,7 +97,7 @@
|
|
100 |
<div class="hero-body">
|
101 |
<img src="./static/images/bmbench.png" alt="BMBENCH Image" width="100%">
|
102 |
<h2 class="subtitle has-text-centered">
|
103 |
-
<span class="dnerf">
|
104 |
</h2>
|
105 |
</div>
|
106 |
</div>
|
@@ -115,14 +112,17 @@
|
|
115 |
<h2 class="title is-3">Abstract</h2>
|
116 |
<div class="content has-text-justified">
|
117 |
<p>
|
118 |
-
The
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
126 |
</p>
|
127 |
</div>
|
128 |
</div>
|
@@ -131,112 +131,13 @@
|
|
131 |
</section>
|
132 |
|
133 |
|
134 |
-
<!-- Include Bulma CSS -->
|
135 |
-
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/css/bulma.min.css">
|
136 |
-
|
137 |
-
<script src="https://cdn.jsdelivr.net/npm/[email protected]/papaparse.min.js"></script>
|
138 |
-
|
139 |
-
<div class="container">
|
140 |
-
<h1 class="title is-1 leaderboard-title">Leaderboard</h1>
|
141 |
-
<div class="field is-grouped is-grouped-multiline">
|
142 |
-
<div class="control">
|
143 |
-
<div class="select">
|
144 |
-
<select id="task-select">
|
145 |
-
<option value="binary_classification">Binary Classification</option>
|
146 |
-
<option value="multiclass">Multiclass Classification</option>
|
147 |
-
<option value="regression">Regression</option>
|
148 |
-
<option value="clustering">Clustering</option>
|
149 |
-
</select>
|
150 |
-
</div>
|
151 |
-
</div>
|
152 |
-
<div class="control">
|
153 |
-
<div class="select">
|
154 |
-
<select id="stage-select">
|
155 |
-
<option value="preprocessing">Preprocessing</option>
|
156 |
-
<option value="inprocessing">Inprocessing</option>
|
157 |
-
<option value="postprocessing">Postprocessing</option>
|
158 |
-
</select>
|
159 |
-
</div>
|
160 |
-
</div>
|
161 |
-
</div>
|
162 |
-
|
163 |
-
<div id="table-container"></div>
|
164 |
-
</div>
|
165 |
-
|
166 |
-
<script>
|
167 |
-
function loadTable() {
|
168 |
-
const taskSelect = document.getElementById('task-select');
|
169 |
-
const stageSelect = document.getElementById('stage-select');
|
170 |
-
const task = taskSelect.value;
|
171 |
-
const stage = stageSelect.value;
|
172 |
-
const csvUrl = `https://huggingface.co/datasets/holistic-ai/bias_mitigation_benchmark/resolve/main/benchmark_${task}_${stage}.csv`;
|
173 |
-
|
174 |
-
// Clear previous table
|
175 |
-
document.getElementById('table-container').innerHTML = '';
|
176 |
-
|
177 |
-
// Fetch and process the CSV data
|
178 |
-
fetch(csvUrl)
|
179 |
-
.then(response => response.text())
|
180 |
-
.then(csvData => {
|
181 |
-
Papa.parse(csvData, {
|
182 |
-
header: true,
|
183 |
-
complete: function(results) {
|
184 |
-
const data = results.data;
|
185 |
-
|
186 |
-
// Get the headers
|
187 |
-
const headers = results.meta.fields;
|
188 |
-
|
189 |
-
// Create table
|
190 |
-
const table = document.createElement('table');
|
191 |
-
table.className = 'table is-striped is-hoverable is-fullwidth';
|
192 |
-
|
193 |
-
// Create header row
|
194 |
-
const thead = document.createElement('thead');
|
195 |
-
const headerRow = document.createElement('tr');
|
196 |
-
headers.forEach(headerText => {
|
197 |
-
const th = document.createElement('th');
|
198 |
-
th.appendChild(document.createTextNode(headerText));
|
199 |
-
headerRow.appendChild(th);
|
200 |
-
});
|
201 |
-
thead.appendChild(headerRow);
|
202 |
-
table.appendChild(thead);
|
203 |
-
|
204 |
-
// Add data rows
|
205 |
-
const tbody = document.createElement('tbody');
|
206 |
-
data.forEach(rowData => {
|
207 |
-
const row = document.createElement('tr');
|
208 |
-
headers.forEach(header => {
|
209 |
-
const td = document.createElement('td');
|
210 |
-
td.appendChild(document.createTextNode(rowData[header]));
|
211 |
-
row.appendChild(td);
|
212 |
-
});
|
213 |
-
tbody.appendChild(row);
|
214 |
-
});
|
215 |
-
table.appendChild(tbody);
|
216 |
-
|
217 |
-
// Add table to the container
|
218 |
-
document.getElementById('table-container').appendChild(table);
|
219 |
-
}
|
220 |
-
});
|
221 |
-
})
|
222 |
-
.catch(error => console.error(error));
|
223 |
-
}
|
224 |
-
|
225 |
-
// Load table on page load
|
226 |
-
loadTable();
|
227 |
-
|
228 |
-
// Add event listeners to selectors
|
229 |
-
document.getElementById('task-select').addEventListener('change', loadTable);
|
230 |
-
document.getElementById('stage-select').addEventListener('change', loadTable);
|
231 |
-
</script>
|
232 |
-
|
233 |
<section class="section" id="BibTeX">
|
234 |
<div class="container is-max-desktop content">
|
235 |
<h2 class="title">BibTeX</h2>
|
236 |
<pre><code>@article{dacosta2025bmbench,
|
237 |
-
author = {da Costa, K.,
|
238 |
-
title = {
|
239 |
-
year = {
|
240 |
url = {}
|
241 |
}</code></pre>
|
242 |
</div>
|
|
|
6 |
content="Empirical Benchmarking of Algorithmic Fairness in Machine Learning Models">
|
7 |
<meta name="keywords" content="Machine Learning, Bias Mitigation, Benchmark">
|
8 |
<meta name="viewport" content="width=device-width, initial-scale=1">
|
9 |
+
<title>Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics</title>
|
10 |
|
11 |
<link href="https://fonts.googleapis.com/css?family=Space+Grotesk"
|
12 |
rel="stylesheet">
|
|
|
33 |
<div class="container is-max-desktop">
|
34 |
<div class="columns is-centered">
|
35 |
<div class="column has-text-centered">
|
36 |
+
<h1 class="title is-1 publication-title">Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics</h1>
|
37 |
<div class="is-size-5 publication-authors">
|
|
|
|
|
38 |
<span class="author-block">
|
39 |
<a href="https://crismunoz.github.io/" target="_blank">Cristian Munoz</a><sup>1</sup>,</span>
|
40 |
<span class="author-block">
|
41 |
+
<a href="https://kleytondacosta.com" target="_blank">Kleyton da Costa</a><sup>1, 2</sup>,</span>
|
|
|
42 |
<span class="author-block">
|
43 |
+
<a href="https://sites.google.com/view/bmodenesi" target="_blank">Bernardo Modenesi</a><sup>3</sup>,
|
44 |
</span>
|
45 |
<span class="author-block">
|
46 |
<a href="https://scholar.google.com/citations?user=MuJGqNAAAAAJ&hl=en" target="_blank">Adriano Koshiyama</a><sup>1</sup>
|
|
|
97 |
<div class="hero-body">
|
98 |
<img src="./static/images/bmbench.png" alt="BMBENCH Image" width="100%">
|
99 |
<h2 class="subtitle has-text-centered">
|
100 |
+
<span class="dnerf">EAMEX</span> framework and pipeline process.
|
101 |
</h2>
|
102 |
</div>
|
103 |
</div>
|
|
|
112 |
<h2 class="title is-3">Abstract</h2>
|
113 |
<div class="content has-text-justified">
|
114 |
<p>
|
115 |
+
The rapid integration of artificial intelligence (AI) into various industries has introduced new challenges in
|
116 |
+
governance and regulation, particularly regarding the understanding of complex AI systems. A critical demand
|
117 |
+
from decision-makers is the ability to explain the results of machine learning models, which is essential for
|
118 |
+
fostering trust and ensuring ethical AI practices. In this paper, we develop six distinct model-agnostic metrics
|
119 |
+
designed to quantify the extent to which model predictions can be explained. These metrics measure different aspects
|
120 |
+
of model explainability, ranging from local importance, global importance, and surrogate predictions, allowing for a
|
121 |
+
comprehensive evaluation of how models generate their outputs. Furthermore, by computing our metrics, we can rank
|
122 |
+
models in terms of explainability criteria such as importance concentration and consistency, prediction fluctuation,
|
123 |
+
and surrogate fidelity and stability, offering a valuable tool for selecting models based not only on accuracy but
|
124 |
+
also on transparency. We demonstrate the practical utility of these metrics on classification and regression tasks,
|
125 |
+
and integrate these metrics into an existing Python package for public use.
|
126 |
</p>
|
127 |
</div>
|
128 |
</div>
|
|
|
131 |
</section>
|
132 |
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
<section class="section" id="BibTeX">
|
135 |
<div class="container is-max-desktop content">
|
136 |
<h2 class="title">BibTeX</h2>
|
137 |
<pre><code>@article{dacosta2025bmbench,
|
138 |
+
author = {Munoz, C., da Costa, K., Modenesi, B., Koshiyama, A.},
|
139 |
+
title = {Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics},
|
140 |
+
year = {2024},
|
141 |
url = {}
|
142 |
}</code></pre>
|
143 |
</div>
|