File size: 5,137 Bytes
e04dce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
"""General-purpose test script for image-to-image translation.



Once you have trained your model with train.py, you can use this script to test the model.

It will load a saved model from '--checkpoints_dir' and save the results to '--results_dir'.



It first creates model and dataset given the option. It will hard-code some parameters.

It then runs inference for '--num_test' images and save results to an HTML file.



Example (You need to train models first or download pre-trained models from our website):

    Test a CycleGAN model (both sides):

        python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan



    Test a CycleGAN model (one side only):

        python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout



    The option '--model test' is used for generating CycleGAN results only for one side.

    This option will automatically set '--dataset_mode single', which only loads the images from one set.

    On the contrary, using '--model cycle_gan' requires loading and generating results in both directions,

    which is sometimes unnecessary. The results will be saved at ./results/.

    Use '--results_dir <directory_path_to_save_result>' to specify the results directory.



    Test a pix2pix model:

        python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA



See options/base_options.py and options/test_options.py for more test options.

See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md

See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md

"""
import os
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
from util.visualizer import save_images
from util import html
from PIL import Image
import numpy as np
import torch
from util.guidedfilter import GuidedFilter

if __name__ == '__main__':
    opt = TestOptions().parse()  # get test options
    # hard-code some parameters for test
    opt.num_threads = 0   # test code only supports num_threads = 1
    opt.batch_size = 1    # test code only supports batch_size = 1
    opt.serial_batches = True  # disable data shuffling; comment this line if results on randomly chosen images are needed.
    opt.no_flip = True    # no flip; comment this line if results on flipped images are needed.
    opt.display_id = -1   # no visdom display; the test code saves the results to a HTML file.
    dataset = create_dataset(opt)  # create a dataset given opt.dataset_mode and other options
    model = create_model(opt)      # create a model given opt.model and other options
    model.setup(opt)               # regular setup: load and print networks; create schedulers
    # create a website
    web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch))  # define the website directory
    if opt.load_iter > 0:  # load_iter is 0 by default
        web_dir = '{:s}_iter{:d}'.format(web_dir, opt.load_iter)
    print('creating web directory', web_dir)
    # webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch))
    # test with eval mode. This only affects layers like batchnorm and dropout.
    # For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode.
    # For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout.
    normalize_coef = np.float32(2 ** (16))

    model.eval()
    for i, data in enumerate(dataset):
        model.set_input_train(data)  # unpack data from data loader
        model.test()           # run inference
        visuals = model.get_current_visuals()  # get image results
        img_path = model.get_image_paths()     # get image paths
        filename = os.path.basename(img_path[0])
        print('processing (%04d)-th image... %s' % (i, filename))

        inner = visuals['inner']
        inner = inner.cpu()
        inner = torch.squeeze(inner)
        inner = inner.numpy()
        inner = (inner + 1) / 2

        out = visuals['fake_B']
        out = out.cpu()
        out = torch.squeeze(out)
        out = out.numpy()
        out = (out+1)/2

        # out = GuidedFilter(inner, out, 32, 0).smooth.astype('float32')
        out = GuidedFilter(inner, out, 64, 0).smooth.astype('float32')

        out = out * (normalize_coef - 1)
        out = out.astype('uint16')
        out = Image.fromarray(out)
        out = out.convert('I;16')
        # out = out.resize(input_size)

        save_dirname = os.path.join('results','mahdi_pix2pix_unet_l1_basic','test_latest')
        if not os.path.exists(save_dirname):
            os.makedirs(save_dirname)
        out.save(os.path.join(save_dirname, filename))
        # save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize)
    # webpage.save()  # save the HTML