File size: 32,785 Bytes
e04dce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import traceback
from pathlib import Path
import gradio as gr
from PIL import Image

from src import backbone, video_mode
from src.core import core_generation_funnel, unload_models, run_makevideo
from src.depthmap_generation import ModelHolder
from src.gradio_args_transport import GradioComponentBundle
from src.misc import *
from src.common_constants import GenerationOptions as go

# Ugly workaround to fix gradio tempfile issue
def ensure_gradio_temp_directory():
    try:
        import tempfile
        path = os.path.join(tempfile.gettempdir(), 'gradio')
        if not (os.path.exists(path)):
            os.mkdir(path)
    except Exception as e:
        traceback.print_exc()


ensure_gradio_temp_directory()


def main_ui_panel(is_depth_tab):
    inp = GradioComponentBundle()
    # TODO: Greater visual separation
    with gr.Blocks():
        with gr.Row() as cur_option_root:
            inp -= 'depthmap_gen_row_0', cur_option_root
            inp += go.COMPUTE_DEVICE, gr.Radio(label="Compute on", choices=['GPU', 'CPU'], value='GPU')
            # TODO: Should return value instead of index. Maybe Enum should be used?
            inp += go.MODEL_TYPE, gr.Dropdown(label="Model",
                                             choices=['res101', 'dpt_beit_large_512 (midas 3.1)',
                                                      'dpt_beit_large_384 (midas 3.1)', 'dpt_large_384 (midas 3.0)',
                                                      'dpt_hybrid_384 (midas 3.0)',
                                                      'midas_v21', 'midas_v21_small',
                                                      'zoedepth_n (indoor)', 'zoedepth_k (outdoor)', 'zoedepth_nk',
                                                      'Marigold v1', 'Depth Anything', 'Depth Anything v2 Small',
                                                      'Depth Anything v2 Base', 'Depth Anything v2 Large'],
                                              value='Depth Anything v2 Base', type="index")
        with gr.Box() as cur_option_root:
            inp -= 'depthmap_gen_row_1', cur_option_root
            with gr.Row():
                inp += go.BOOST, gr.Checkbox(label="BOOST",
                                             info="Generate depth map parts in a mosaic fashion - very slow",
                                             value=False)
                inp += go.NET_SIZE_MATCH, gr.Checkbox(label="Match net size to input size",
                                                      info="Net size affects quality, performance and VRAM usage")
            with gr.Row() as options_depend_on_match_size:
                inp += go.NET_WIDTH, gr.Slider(minimum=64, maximum=2048, step=64, label='Net width')
                inp += go.NET_HEIGHT, gr.Slider(minimum=64, maximum=2048, step=64, label='Net height')
            with gr.Row():
                inp += go.TILING_MODE, gr.Checkbox(
                    label='Tiling mode', info='Reduces seams that appear if the depthmap is tiled into a grid'
                )

        with gr.Box() as cur_option_root:
            inp -= 'depthmap_gen_row_2', cur_option_root
            with gr.Row():
                with gr.Group():  # 50% of width
                    inp += "save_outputs", gr.Checkbox(label="Save Outputs", value=True)
                with gr.Group():  # 50% of width
                    inp += go.DO_OUTPUT_DEPTH, gr.Checkbox(label="Output DepthMap")
                    inp += go.OUTPUT_DEPTH_INVERT, gr.Checkbox(label="Invert (black=near, white=far)")
            with gr.Row() as options_depend_on_output_depth_1:
                inp += go.OUTPUT_DEPTH_COMBINE, gr.Checkbox(
                    label="Combine input and depthmap into one image")
                inp += go.OUTPUT_DEPTH_COMBINE_AXIS, gr.Radio(
                    label="Combine axis", choices=['Vertical', 'Horizontal'], type="value", visible=False)

        with gr.Box() as cur_option_root:
            inp -= 'depthmap_gen_row_3', cur_option_root
            with gr.Row():
                inp += go.CLIPDEPTH, gr.Checkbox(label="Clip and renormalize DepthMap")
                inp += go.CLIPDEPTH_MODE,\
                    gr.Dropdown(label="Mode", choices=['Range', 'Outliers'], type="value", visible=False)
            with gr.Row(visible=False) as clip_options_row_1:
                inp += go.CLIPDEPTH_FAR, gr.Slider(minimum=0, maximum=1, step=0.001, label='Far clip')
                inp += go.CLIPDEPTH_NEAR, gr.Slider(minimum=0, maximum=1, step=0.001, label='Near clip')

        with gr.Box():
            with gr.Row():
                inp += go.GEN_STEREO, gr.Checkbox(label="Generate stereoscopic (3D) image(s)")
            with gr.Column(visible=False) as stereo_options:
                with gr.Row():
                    inp += go.STEREO_MODES, gr.CheckboxGroup(
                        ["left-right", "right-left", "top-bottom", "bottom-top", "red-cyan-anaglyph",
                         "left-only", "only-right", "cyan-red-reverseanaglyph"
                         ][0:8 if backbone.get_opt('depthmap_script_extra_stereomodes', False) else 5], label="Output")
                with gr.Row():
                    inp += go.STEREO_DIVERGENCE, gr.Slider(minimum=0.05, maximum=15.005, step=0.01,
                                                          label='Divergence (3D effect)')
                    inp += go.STEREO_SEPARATION, gr.Slider(minimum=-5.0, maximum=5.0, step=0.01,
                                                          label='Separation (moves images apart)')
                with gr.Row():
                    inp += go.STEREO_FILL_ALGO, gr.Dropdown(label="Gap fill technique",
                                                      choices=['none', 'naive', 'naive_interpolating', 'polylines_soft',
                                                               'polylines_sharp'],
                                                      type="value")
                    inp += go.STEREO_OFFSET_EXPONENT, gr.Slider(label="Magic exponent", minimum=1, maximum=2, step=1)
                    inp += go.STEREO_BALANCE, gr.Slider(minimum=-1.0, maximum=1.0, step=0.05,
                                                       label='Balance between eyes')

        with gr.Box():
            with gr.Row():
                inp += go.GEN_NORMALMAP, gr.Checkbox(label="Generate NormalMap")
            with gr.Column(visible=False) as normalmap_options:
                with gr.Row():
                    inp += go.NORMALMAP_PRE_BLUR, gr.Checkbox(label="Smooth before calculating normals")
                    inp += go.NORMALMAP_PRE_BLUR_KERNEL, gr.Slider(minimum=1, maximum=31, step=2, label='Pre-smooth kernel size', visible=False)
                    inp.add_rule(go.NORMALMAP_PRE_BLUR_KERNEL, 'visible-if', go.NORMALMAP_PRE_BLUR)
                with gr.Row():
                    inp += go.NORMALMAP_SOBEL, gr.Checkbox(label="Sobel gradient")
                    inp += go.NORMALMAP_SOBEL_KERNEL, gr.Slider(minimum=1, maximum=31, step=2, label='Sobel kernel size')
                    inp.add_rule(go.NORMALMAP_SOBEL_KERNEL, 'visible-if', go.NORMALMAP_SOBEL)
                with gr.Row():
                    inp += go.NORMALMAP_POST_BLUR, gr.Checkbox(label="Smooth after calculating normals")
                    inp += go.NORMALMAP_POST_BLUR_KERNEL, gr.Slider(minimum=1, maximum=31, step=2, label='Post-smooth kernel size', visible=False)
                    inp.add_rule(go.NORMALMAP_POST_BLUR_KERNEL, 'visible-if', go.NORMALMAP_POST_BLUR)
                with gr.Row():
                    inp += go.NORMALMAP_INVERT, gr.Checkbox(label="Invert")

        if backbone.get_opt('depthmap_script_gen_heatmap_from_ui', False):
            with gr.Box():
                with gr.Row():
                    inp += go.GEN_HEATMAP, gr.Checkbox(label="Generate HeatMap")

        with gr.Box():
            with gr.Column():
                inp += go.GEN_SIMPLE_MESH, gr.Checkbox(label="Generate simple 3D mesh")
            with gr.Column(visible=False) as mesh_options:
                with gr.Row():
                    gr.HTML(value="Generates fast, accurate only with ZoeDepth models and no boost, no custom maps.")
                with gr.Row():
                    inp += go.SIMPLE_MESH_OCCLUDE, gr.Checkbox(label="Remove occluded edges")
                    inp += go.SIMPLE_MESH_SPHERICAL, gr.Checkbox(label="Equirectangular projection")

        if is_depth_tab:
            with gr.Box():
                with gr.Column():
                    inp += go.GEN_INPAINTED_MESH, gr.Checkbox(
                        label="Generate 3D inpainted mesh")
                with gr.Column(visible=False) as inpaint_options_row_0:
                    gr.HTML("Generation is sloooow. Required for generating videos from mesh.")
                    inp += go.GEN_INPAINTED_MESH_DEMOS, gr.Checkbox(
                        label="Generate 4 demo videos with 3D inpainted mesh.")
                    gr.HTML("More options for generating video can be found in the Generate video tab.")

        with gr.Box():
            # TODO: it should be clear from the UI that there is an option of the background removal
            #  that does not use the model selected above
            with gr.Row():
                inp += go.GEN_REMBG, gr.Checkbox(label="Remove background")
            with gr.Column(visible=False) as bgrem_options:
                with gr.Row():
                    inp += go.SAVE_BACKGROUND_REMOVAL_MASKS, gr.Checkbox(label="Save the foreground masks")
                    inp += go.PRE_DEPTH_BACKGROUND_REMOVAL, gr.Checkbox(label="Pre-depth background removal")
                with gr.Row():
                    inp += go.REMBG_MODEL, gr.Dropdown(
                        label="Rembg Model", type="value",
                        choices=['u2net', 'u2netp', 'u2net_human_seg', 'silueta', "isnet-general-use", "isnet-anime"])

        with gr.Box():
            gr.HTML(f"{SCRIPT_FULL_NAME}<br/>")
            gr.HTML("Information, comment and share @ <a "
                    "href='https://github.com/thygate/stable-diffusion-webui-depthmap-script'>"
                    "https://github.com/thygate/stable-diffusion-webui-depthmap-script</a>")

        def update_default_net_size(model_type):
            w, h = ModelHolder.get_default_net_size(model_type)
            return inp[go.NET_WIDTH].update(value=w), inp[go.NET_HEIGHT].update(value=h)

        inp[go.MODEL_TYPE].change(
            fn=update_default_net_size,
            inputs=inp[go.MODEL_TYPE],
            outputs=[inp[go.NET_WIDTH], inp[go.NET_HEIGHT]]
        )

        inp[go.BOOST].change(  # Go boost! Wroom!..
            fn=lambda a, b: (inp[go.NET_SIZE_MATCH].update(visible=not a),
                             options_depend_on_match_size.update(visible=not a and not b)),
            inputs=[inp[go.BOOST], inp[go.NET_SIZE_MATCH]],
            outputs=[inp[go.NET_SIZE_MATCH], options_depend_on_match_size]
        )
        inp.add_rule(options_depend_on_match_size, 'visible-if-not', go.NET_SIZE_MATCH)
        inp[go.TILING_MODE].change(  # Go boost! Wroom!..
            fn=lambda a: (
                inp[go.BOOST].update(value=False), inp[go.NET_SIZE_MATCH].update(value=True)
            ) if a else (inp[go.BOOST].update(), inp[go.NET_SIZE_MATCH].update()),
            inputs=[inp[go.TILING_MODE]],
            outputs=[inp[go.BOOST], inp[go.NET_SIZE_MATCH]]
        )

        inp.add_rule(options_depend_on_output_depth_1, 'visible-if', go.DO_OUTPUT_DEPTH)
        inp.add_rule(go.OUTPUT_DEPTH_INVERT, 'visible-if', go.DO_OUTPUT_DEPTH)
        inp.add_rule(go.OUTPUT_DEPTH_COMBINE_AXIS, 'visible-if', go.OUTPUT_DEPTH_COMBINE)
        inp.add_rule(go.CLIPDEPTH_MODE, 'visible-if', go.CLIPDEPTH)
        inp.add_rule(clip_options_row_1, 'visible-if', go.CLIPDEPTH)

        inp[go.CLIPDEPTH_FAR].change(
            fn=lambda a, b: a if b < a else b,
            inputs=[inp[go.CLIPDEPTH_FAR], inp[go.CLIPDEPTH_NEAR]],
            outputs=[inp[go.CLIPDEPTH_NEAR]],
            show_progress=False
        )
        inp[go.CLIPDEPTH_NEAR].change(
            fn=lambda a, b: a if b > a else b,
            inputs=[inp[go.CLIPDEPTH_NEAR], inp[go.CLIPDEPTH_FAR]],
            outputs=[inp[go.CLIPDEPTH_FAR]],
            show_progress=False
        )

        inp.add_rule(stereo_options, 'visible-if', go.GEN_STEREO)
        inp.add_rule(normalmap_options, 'visible-if', go.GEN_NORMALMAP)
        inp.add_rule(mesh_options, 'visible-if', go.GEN_SIMPLE_MESH)
        if is_depth_tab:
            inp.add_rule(inpaint_options_row_0, 'visible-if', go.GEN_INPAINTED_MESH)
        inp.add_rule(bgrem_options, 'visible-if', go.GEN_REMBG)

    return inp

def open_folder_action():
    # Adapted from stable-diffusion-webui
    f = backbone.get_outpath()
    if backbone.get_cmd_opt('hide_ui_dir_config', False):
        return
    if not os.path.exists(f) or not os.path.isdir(f):
        raise Exception("Couldn't open output folder")  # .isdir is security-related, do not remove!
    import platform
    import subprocess as sp
    path = os.path.normpath(f)
    if platform.system() == "Windows":
        os.startfile(path)
    elif platform.system() == "Darwin":
        sp.Popen(["open", path])
    elif "microsoft-standard-WSL2" in platform.uname().release:
        sp.Popen(["wsl-open", path])
    else:
        sp.Popen(["xdg-open", path])


def depthmap_mode_video(inp):
    gr.HTML(value="Single video mode allows generating videos from videos. Please "
                  "keep in mind that all the frames of the video need to be processed - therefore it is important to "
                  "pick settings so that the generation is not too slow. For the best results, "
                  "use a zoedepth model, since they provide the highest level of coherency between frames.")
    inp += gr.File(elem_id='depthmap_vm_input', label="Video or animated file",
                   file_count="single", interactive=True, type="file")
    inp += gr.Checkbox(elem_id="depthmap_vm_custom_checkbox",
                       label="Use custom/pregenerated DepthMap video", value=False)
    inp += gr.Dropdown(elem_id="depthmap_vm_smoothening_mode", label="Smoothening",
                       type="value", choices=['none', 'experimental'], value='experimental')
    inp += gr.File(elem_id='depthmap_vm_custom', file_count="single",
                   interactive=True, type="file", visible=False)
    with gr.Row():
        inp += gr.Checkbox(elem_id='depthmap_vm_compress_checkbox', label="Compress colorvideos?", value=False)
        inp += gr.Slider(elem_id='depthmap_vm_compress_bitrate', label="Bitrate (kbit)", visible=False,
                         minimum=1000, value=15000, maximum=50000, step=250)

    inp.add_rule('depthmap_vm_custom', 'visible-if', 'depthmap_vm_custom_checkbox')
    inp.add_rule('depthmap_vm_smoothening_mode', 'visible-if-not', 'depthmap_vm_custom_checkbox')
    inp.add_rule('depthmap_vm_compress_bitrate', 'visible-if', 'depthmap_vm_compress_checkbox')

    return inp


custom_css = """

#depthmap_vm_input {height: 75px}

#depthmap_vm_custom {height: 75px}

"""


def on_ui_tabs():
    inp = GradioComponentBundle()
    with gr.Blocks(analytics_enabled=False, title="DepthMap", css=custom_css) as depthmap_interface:
        with gr.Row(equal_height=False):
            with gr.Column(variant='panel'):
                inp += 'depthmap_mode', gr.HTML(visible=False, value='0')
                with gr.Tabs():
                    with gr.TabItem('Single Image') as depthmap_mode_0:
                        with gr.Group():
                            with gr.Row():
                                inp += gr.Image(label="Source", source="upload", interactive=True, type="pil",
                                                elem_id="depthmap_input_image")
                                # TODO: depthmap generation settings should disappear when using this
                                inp += gr.File(label="Custom DepthMap", file_count="single", interactive=True,
                                               type="file", elem_id='custom_depthmap_img', visible=False)
                        inp += gr.Checkbox(elem_id="custom_depthmap", label="Use custom DepthMap", value=False)
                    with gr.TabItem('Batch Process') as depthmap_mode_1:
                        inp += gr.File(elem_id='image_batch', label="Batch Process", file_count="multiple",
                                       interactive=True, type="file")
                    with gr.TabItem('Batch from Directory') as depthmap_mode_2:
                        inp += gr.Textbox(elem_id="depthmap_batch_input_dir", label="Input directory",
                                          **backbone.get_hide_dirs(),
                                          placeholder="A directory on the same machine where the server is running.")
                        inp += gr.Textbox(elem_id="depthmap_batch_output_dir", label="Output directory",
                                          **backbone.get_hide_dirs(),
                                          placeholder="Leave blank to save images to the default path.")
                        gr.HTML("Files in the output directory may be overwritten.")
                        inp += gr.Checkbox(elem_id="depthmap_batch_reuse",
                                           label="Skip generation and use (edited/custom) depthmaps "
                                                 "in output directory when a file already exists.",
                                           value=True)
                    with gr.TabItem('Single Video') as depthmap_mode_3:
                        inp = depthmap_mode_video(inp)
                submit = gr.Button('Generate', elem_id="depthmap_generate", variant='primary')
                inp |= main_ui_panel(True)  # Main panel is inserted here
                unloadmodels = gr.Button('Unload models', elem_id="depthmap_unloadmodels")

            with gr.Column(variant='panel'):
                with gr.Tabs(elem_id="mode_depthmap_output"):
                    with gr.TabItem('Depth Output'):
                        with gr.Group():
                            result_images = gr.Gallery(label='Output', show_label=False,
                                                       elem_id=f"depthmap_gallery", columns=4)
                        with gr.Column():
                            html_info = gr.HTML()
                        folder_symbol = '\U0001f4c2'  # 📂
                        gr.Button(folder_symbol, visible=not backbone.get_cmd_opt('hide_ui_dir_config', False)).click(
                            fn=lambda: open_folder_action(), inputs=[], outputs=[],
                        )

                    with gr.TabItem('3D Mesh'):
                        with gr.Group():
                            result_depthmesh = gr.Model3D(label="3d Mesh", clear_color=[1.0, 1.0, 1.0, 1.0])
                            with gr.Row():
                                # loadmesh = gr.Button('Load')
                                clearmesh = gr.Button('Clear')

                    with gr.TabItem('Generate video'):
                        # generate video
                        with gr.Group():
                            with gr.Row():
                                gr.Markdown("Generate video from inpainted(!) mesh.")
                            with gr.Row():
                                depth_vid = gr.Video(interactive=False)
                            with gr.Column():
                                vid_html_info_x = gr.HTML()
                                vid_html_info = gr.HTML()
                                fn_mesh = gr.Textbox(label="Input Mesh (.ply | .obj)", **backbone.get_hide_dirs(),
                                                     placeholder="A file on the same machine where "
                                                                 "the server is running.")
                            with gr.Row():
                                vid_numframes = gr.Textbox(label="Number of frames", value="300")
                                vid_fps = gr.Textbox(label="Framerate", value="40")
                                vid_format = gr.Dropdown(label="Format", choices=['mp4', 'webm'], value='mp4',
                                                         type="value", elem_id="video_format")
                                vid_ssaa = gr.Dropdown(label="SSAA", choices=['1', '2', '3', '4'], value='3',
                                                       type="value", elem_id="video_ssaa")
                            with gr.Row():
                                vid_traj = gr.Dropdown(label="Trajectory",
                                                       choices=['straight-line', 'double-straight-line', 'circle'],
                                                       value='double-straight-line', type="index",
                                                       elem_id="video_trajectory")
                                vid_shift = gr.Textbox(label="Translate: x, y, z", value="-0.015, 0.0, -0.05")
                                vid_border = gr.Textbox(label="Crop: top, left, bottom, right",
                                                        value="0.03, 0.03, 0.05, 0.03")
                                vid_dolly = gr.Checkbox(label="Dolly", value=False, elem_classes="smalltxt")
                            with gr.Row():
                                submit_vid = gr.Button('Generate Video', elem_id="depthmap_generatevideo",
                                                       variant='primary')

        inp += inp.enkey_tail()

        depthmap_mode_0.select(lambda: '0', None, inp['depthmap_mode'])
        depthmap_mode_1.select(lambda: '1', None, inp['depthmap_mode'])
        depthmap_mode_2.select(lambda: '2', None, inp['depthmap_mode'])
        depthmap_mode_3.select(lambda: '3', None, inp['depthmap_mode'])

        def custom_depthmap_change_fn(mode, zero_on, three_on):
            hide = mode == '0' and zero_on or mode == '3' and three_on
            return inp['custom_depthmap_img'].update(visible=hide), \
                inp['depthmap_gen_row_0'].update(visible=not hide), \
                inp['depthmap_gen_row_1'].update(visible=not hide), \
                inp['depthmap_gen_row_3'].update(visible=not hide), not hide
        custom_depthmap_change_els = ['depthmap_mode', 'custom_depthmap', 'depthmap_vm_custom_checkbox']
        for el in custom_depthmap_change_els:
            inp[el].change(
            fn=custom_depthmap_change_fn,
            inputs=[inp[el] for el in custom_depthmap_change_els],
            outputs=[inp[st] for st in [
                'custom_depthmap_img', 'depthmap_gen_row_0', 'depthmap_gen_row_1', 'depthmap_gen_row_3',
                go.DO_OUTPUT_DEPTH]])

        unloadmodels.click(
            fn=unload_models,
            inputs=[],
            outputs=[]
        )

        clearmesh.click(
            fn=lambda: None,
            inputs=[],
            outputs=[result_depthmesh]
        )

        submit.click(
            fn=backbone.wrap_gradio_gpu_call(run_generate),
            inputs=inp.enkey_body(),
            outputs=[
                result_images,
                fn_mesh,
                result_depthmesh,
                html_info
            ]
        )

        submit_vid.click(
            fn=backbone.wrap_gradio_gpu_call(run_makevideo),
            inputs=[
                fn_mesh,
                vid_numframes,
                vid_fps,
                vid_traj,
                vid_shift,
                vid_border,
                vid_dolly,
                vid_format,
                vid_ssaa
            ],
            outputs=[
                depth_vid,
                vid_html_info_x,
                vid_html_info
            ]
        )

    return depthmap_interface


def format_exception(e: Exception):
    traceback.print_exc()
    msg = '<h3>' + 'ERROR: ' + str(e) + '</h3>' + '\n'
    if 'out of GPU memory' in msg:
        pass
    elif "torch.hub.load('facebookresearch/dinov2'," in traceback.format_exc():
        msg += ('<h4>To use Depth Anything integration in WebUI mode, please add "--disable-safe-unpickle" to the command line flags. '
                'Alternatively, use Standalone mode. This is a known issue.')
    elif "Error(s) in loading state_dict " in traceback.format_exc():
        msg += ('<h4>There was issue during loading the model.'
                'Please add "--disable-safe-unpickle" to the command line flags. This is a known issue.')
    elif 'out of GPU memory' not in msg:
        msg += \
            'Please report this issue ' \
            f'<a href="https://github.com/thygate/{REPOSITORY_NAME}/issues">here</a>. ' \
            'Make sure to provide the full stacktrace: \n'
        msg += '<code style="white-space: pre;">' + traceback.format_exc() + '</code>'
    return msg


def run_generate(*inputs):
    inputs = GradioComponentBundle.enkey_to_dict(inputs)
    depthmap_mode = inputs['depthmap_mode']
    depthmap_batch_input_dir = inputs['depthmap_batch_input_dir']
    image_batch = inputs['image_batch']
    depthmap_input_image = inputs['depthmap_input_image']
    depthmap_batch_output_dir = inputs['depthmap_batch_output_dir']
    depthmap_batch_reuse = inputs['depthmap_batch_reuse']
    custom_depthmap = inputs['custom_depthmap']
    custom_depthmap_img = inputs['custom_depthmap_img']

    inputimages = []
    inputdepthmaps = []  # Allow supplying custom depthmaps
    inputnames = []  # Also keep track of original file names

    if depthmap_mode == '3':
        try:
            custom_depthmap = inputs['depthmap_vm_custom'] \
                if inputs['depthmap_vm_custom_checkbox'] else None
            colorvids_bitrate = inputs['depthmap_vm_compress_bitrate'] \
                if inputs['depthmap_vm_compress_checkbox'] else None
            ret = video_mode.gen_video(
                inputs['depthmap_vm_input'], backbone.get_outpath(), inputs, custom_depthmap, colorvids_bitrate,
                inputs['depthmap_vm_smoothening_mode'])
            return [], None, None, ret
        except Exception as e:
            ret = format_exception(e)
        return [], None, None, ret

    if depthmap_mode == '2' and depthmap_batch_output_dir != '':
        outpath = depthmap_batch_output_dir
    else:
        outpath = backbone.get_outpath()

    if depthmap_mode == '0':  # Single image
        if depthmap_input_image is None:
            return [], None, None, "Please select an input image"
        inputimages.append(depthmap_input_image)
        inputnames.append(None)
        if custom_depthmap:
            if custom_depthmap_img is None:
                return [], None, None, \
                    "Custom depthmap is not specified. Please either supply it or disable this option."
            inputdepthmaps.append(Image.open(os.path.abspath(custom_depthmap_img.name)))
        else:
            inputdepthmaps.append(None)
    if depthmap_mode == '1':  # Batch Process
        if image_batch is None:
            return [], None, None, "Please select input images", ""
        for img in image_batch:
            image = Image.open(os.path.abspath(img.name))
            inputimages.append(image)
            inputnames.append(os.path.splitext(img.orig_name)[0])
        print(f'{len(inputimages)} images will be processed')
    elif depthmap_mode == '2':  # Batch from Directory
        # TODO: There is a RAM leak when we process batches, I can smell it! Or maybe it is gone.
        assert not backbone.get_cmd_opt('hide_ui_dir_config', False), '--hide-ui-dir-config option must be disabled'
        if depthmap_batch_input_dir == '':
            return [], None, None, "Please select an input directory."
        if depthmap_batch_input_dir == depthmap_batch_output_dir:
            return [], None, None, "Please pick different directories for batch processing."
        image_list = backbone.listfiles(depthmap_batch_input_dir)
        for path in image_list:
            try:
                inputimages.append(Image.open(path))
                inputnames.append(path)

                custom_depthmap = None
                if depthmap_batch_reuse:
                    basename = Path(path).stem
                    # Custom names are not used in samples directory
                    if outpath != backbone.get_opt('outdir_extras_samples', None):
                        # Possible filenames that the custom depthmaps may have
                        name_candidates = [f'{basename}-0000.{backbone.get_opt("samples_format", "png")}',  # current format
                                           f'{basename}.png',  # human-intuitive format
                                           f'{Path(path).name}']  # human-intuitive format (worse)
                        for fn_cand in name_candidates:
                            path_cand = os.path.join(outpath, fn_cand)
                            if os.path.isfile(path_cand):
                                custom_depthmap = Image.open(os.path.abspath(path_cand))
                                break
                inputdepthmaps.append(custom_depthmap)
            except Exception as e:
                print(f'Failed to load {path}, ignoring. Exception: {str(e)}')
        inputdepthmaps_n = len([1 for x in inputdepthmaps if x is not None])
        print(f'{len(inputimages)} images will be processed, {inputdepthmaps_n} existing depthmaps will be reused')

    gen_obj = core_generation_funnel(outpath, inputimages, inputdepthmaps, inputnames, inputs, backbone.gather_ops())

    # Saving images
    img_results = []
    results_total = 0
    inpainted_mesh_fi = mesh_simple_fi = None
    msg = ""  # Empty string is never returned
    while True:
        try:
            input_i, type, result = next(gen_obj)
            results_total += 1
        except StopIteration:
            # TODO: return more info
            msg = '<h3>Successfully generated</h3>' if results_total > 0 else \
                '<h3>Successfully generated nothing - please check the settings and try again</h3>'
            break
        except Exception as e:
            msg = format_exception(e)
            break
        if type == 'simple_mesh':
            mesh_simple_fi = result
            continue
        if type == 'inpainted_mesh':
            inpainted_mesh_fi = result
            continue
        if not isinstance(result, Image.Image):
            print(f'This is not supposed to happen! Somehow output type {type} is not supported! Input_i: {input_i}.')
            continue
        img_results += [(input_i, type, result)]

        if inputs["save_outputs"]:
            try:
                basename = 'depthmap'
                if depthmap_mode == '2' and inputnames[input_i] is not None:
                    if outpath != backbone.get_opt('outdir_extras_samples', None):
                        basename = Path(inputnames[input_i]).stem
                suffix = "" if type == "depth" else f"{type}"
                backbone.save_image(result, path=outpath, basename=basename, seed=None,
                           prompt=None, extension=backbone.get_opt('samples_format', 'png'), short_filename=True,
                           no_prompt=True, grid=False, pnginfo_section_name="extras",
                           suffix=suffix)
            except Exception as e:
                if not ('image has wrong mode' in str(e) or 'I;16' in str(e)):
                    raise e
                print('Catched exception: image has wrong mode!')
                traceback.print_exc()

    # Deciding what mesh to display (and if)
    display_mesh_fi = None
    if backbone.get_opt('depthmap_script_show_3d', True):
        display_mesh_fi = mesh_simple_fi
        if backbone.get_opt('depthmap_script_show_3d_inpaint', True):
            if inpainted_mesh_fi is not None and len(inpainted_mesh_fi) > 0:
                display_mesh_fi = inpainted_mesh_fi
    return map(lambda x: x[2], img_results), inpainted_mesh_fi, display_mesh_fi, msg.replace('\n', '<br>')