Spaces:
Runtime error
Runtime error
File size: 34,243 Bytes
e04dce3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
from pathlib import Path
from PIL import Image
try:
from tqdm import trange
except:
from builtins import range as trange
import torch, gc
import cv2
import os.path
import numpy as np
import copy
import platform
import math
# Our code
from src.misc import *
from src.common_constants import GenerationOptions as go
from src.common_constants import *
from src.stereoimage_generation import create_stereoimages
from src.normalmap_generation import create_normalmap
from src.depthmap_generation import ModelHolder
from src import backbone
try:
# 3d-photo-inpainting imports
from inpaint.mesh import write_mesh, read_mesh, output_3d_photo
from inpaint.networks import Inpaint_Color_Net, Inpaint_Depth_Net, Inpaint_Edge_Net
from inpaint.utils import path_planning
from inpaint.bilateral_filtering import sparse_bilateral_filtering
except Exception as e:
print('Impaint import failed. Impaint will not work.')
import traceback
traceback.print_exc()
global video_mesh_data, video_mesh_fn
video_mesh_data = None
video_mesh_fn = None
model_holder = ModelHolder()
def convert_to_i16(arr):
# Single channel, 16 bit image. This loses some precision!
# uint16 conversion uses round-down, therefore values should be [0; 2**16)
numbytes = 2
max_val = (2 ** (8 * numbytes))
out = np.clip(arr * max_val + 0.0001, 0, max_val - 0.1) # -0.1 from above is needed to avoid overflowing
return out.astype("uint16")
def convert_i16_to_rgb(image, like):
# three channel, 8 bits per channel image
output = np.zeros_like(like)
output[:, :, 0] = image / 256.0
output[:, :, 1] = image / 256.0
output[:, :, 2] = image / 256.0
return output
class CoreGenerationFunnelInp:
"""This class takes a dictionary and creates a core_generation_funnel inp.
Non-applicable parameters are silently discarded (no error)"""
def __init__(self, values):
if isinstance(values, CoreGenerationFunnelInp):
values = values.values
values = {(k.name if isinstance(k, GenerationOptions) else k).lower(): v for k, v in values.items()}
self.values = {}
for setting in GenerationOptions:
name = setting.name.lower()
self.values[name] = values[name] if name in values else setting.df
def __getitem__(self, item):
if isinstance(item, GenerationOptions):
return self.values[item.name.lower()]
return self.values[item]
def __getattr__(self, item):
return self[item]
def core_generation_funnel(outpath, inputimages, inputdepthmaps, inputnames, inp, ops=None):
if len(inputimages) == 0 or inputimages[0] is None:
return
if inputdepthmaps is None or len(inputdepthmaps) == 0:
inputdepthmaps: list[Image] = [None for _ in range(len(inputimages))]
inputdepthmaps_complete = all([x is not None for x in inputdepthmaps])
inp = CoreGenerationFunnelInp(inp)
if ops is None:
ops = backbone.gather_ops()
model_holder.update_settings(**ops)
# TODO: ideally, run_depthmap should not save meshes - that makes the function not pure
print(SCRIPT_FULL_NAME)
print(f'Backbone: {backbone.USED_BACKBONE.name}')
backbone.unload_sd_model()
# TODO: this still should not be here
background_removed_images = []
# remove on base image before depth calculation
if inp[go.GEN_REMBG]:
if inp[go.PRE_DEPTH_BACKGROUND_REMOVAL]:
inputimages = batched_background_removal(inputimages, inp[go.REMBG_MODEL])
background_removed_images = inputimages
else:
background_removed_images = batched_background_removal(inputimages, inp[go.REMBG_MODEL])
# init torch device
if inp[go.COMPUTE_DEVICE] == 'GPU':
if torch.cuda.is_available():
device = torch.device("cuda")
else:
print('WARNING: Cuda device was not found, cpu will be used')
device = torch.device("cpu")
else:
device = torch.device("cpu")
print("device: %s" % device)
# TODO: This should not be here
inpaint_imgs = []
inpaint_depths = []
try:
if not inputdepthmaps_complete:
print("Loading model(s) ..")
model_holder.ensure_models(inp[go.MODEL_TYPE], device, inp[go.BOOST], inp[go.TILING_MODE])
print("Computing output(s) ..")
# iterate over input images
for count in trange(0, len(inputimages)):
# Convert single channel input (PIL) images to rgb
if inputimages[count].mode == 'I':
inputimages[count].point(lambda p: p * 0.0039063096, mode='RGB')
inputimages[count] = inputimages[count].convert('RGB')
raw_prediction = None
"""Raw prediction, as returned by a model. None if input depthmap is used."""
raw_prediction_invert = False
"""True if near=dark on raw_prediction"""
out = None
if inputdepthmaps is not None and inputdepthmaps[count] is not None:
# use custom depthmap
dp = inputdepthmaps[count]
if isinstance(dp, Image.Image):
if dp.width != inputimages[count].width or dp.height != inputimages[count].height:
try: # LANCZOS may fail on some formats
dp = dp.resize((inputimages[count].width, inputimages[count].height), Image.Resampling.LANCZOS)
except:
dp = dp.resize((inputimages[count].width, inputimages[count].height))
# Trying desperately to rescale image to [0;1) without actually normalizing it
# Normalizing is avoided, because we want to preserve the scale of the original depthmaps
# (batch mode, video mode).
if len(dp.getbands()) == 1:
out = np.asarray(dp, dtype="float")
out_max = out.max()
if out_max < 256:
bit_depth = 8
elif out_max < 65536:
bit_depth = 16
else:
bit_depth = 32
out /= 2.0 ** bit_depth
else:
out = np.asarray(dp, dtype="float")[:, :, 0]
out /= 256.0
else:
# Should be in interval [0; 1], values outside of this range will be clipped.
out = np.asarray(dp, dtype="float")
assert inputimages[count].height == out.shape[0], "Custom depthmap height mismatch"
assert inputimages[count].width == out.shape[1], "Custom depthmap width mismatch"
else:
# override net size (size may be different for different images)
if inp[go.NET_SIZE_MATCH]:
# Round up to a multiple of 32 to avoid potential issues
# TODO: buggs for Depth Anything
net_width = (inputimages[count].width + 31) // 32 * 32
net_height = (inputimages[count].height + 31) // 32 * 32
else:
net_width = inp[go.NET_WIDTH]
net_height = inp[go.NET_HEIGHT]
raw_prediction, raw_prediction_invert = \
model_holder.get_raw_prediction(inputimages[count], net_width, net_height)
# output
if abs(raw_prediction.max() - raw_prediction.min()) > np.finfo("float").eps:
out = np.copy(raw_prediction)
# TODO: some models may output negative values, maybe these should be clamped to zero.
if raw_prediction_invert:
out *= -1
if inp[go.DO_OUTPUT_DEPTH_PREDICTION]:
yield count, 'depth_prediction', np.copy(out)
if inp[go.CLIPDEPTH]:
if inp[go.CLIPDEPTH_MODE] == 'Range':
out = (out - out.min()) / (out.max() - out.min()) # normalize to [0; 1]
out = np.clip(out, inp[go.CLIPDEPTH_FAR], inp[go.CLIPDEPTH_NEAR])
elif inp[go.CLIPDEPTH_MODE] == 'Outliers':
fb, nb = np.percentile(out, [inp[go.CLIPDEPTH_FAR] * 100.0, inp[go.CLIPDEPTH_NEAR] * 100.0])
out = np.clip(out, fb, nb)
out = (out - out.min()) / (out.max() - out.min()) # normalize to [0; 1]
else:
# Regretfully, the depthmap is broken and will be replaced with a black image
out = np.zeros(raw_prediction.shape)
# Maybe we should not use img_output for everything, since we get better accuracy from
# the raw_prediction. However, it is not always supported. We maybe would like to achieve
# reproducibility, so depthmap of the image should be the same as generating the depthmap one more time.
img_output = convert_to_i16(out)
"""Depthmap (near=bright), as uint16"""
# if 3dinpainting, store maps for processing in second pass
if inp[go.GEN_INPAINTED_MESH]:
inpaint_imgs.append(inputimages[count])
inpaint_depths.append(img_output)
# applying background masks after depth
if inp[go.GEN_REMBG]:
print('applying background masks')
background_removed_image = background_removed_images[count]
# maybe a threshold cut would be better on the line below.
background_removed_array = np.array(background_removed_image)
bg_mask = (background_removed_array[:, :, 0] == 0) & (background_removed_array[:, :, 1] == 0) & (
background_removed_array[:, :, 2] == 0) & (background_removed_array[:, :, 3] <= 0.2)
img_output[bg_mask] = 0 # far value
yield count, 'background_removed', background_removed_image
if inp[go.SAVE_BACKGROUND_REMOVAL_MASKS]:
bg_array = (1 - bg_mask.astype('int8')) * 255
mask_array = np.stack((bg_array, bg_array, bg_array, bg_array), axis=2)
mask_image = Image.fromarray(mask_array.astype(np.uint8))
yield count, 'foreground_mask', mask_image
# A weird quirk: if user tries to save depthmap, whereas custom depthmap is used,
# custom depthmap will be outputed
if inp[go.DO_OUTPUT_DEPTH]:
img_depth = cv2.bitwise_not(img_output) if inp[go.OUTPUT_DEPTH_INVERT] else img_output
if inp[go.OUTPUT_DEPTH_COMBINE]:
axis = 1 if inp[go.OUTPUT_DEPTH_COMBINE_AXIS] == 'Horizontal' else 0
img_concat = Image.fromarray(np.concatenate(
(inputimages[count], convert_i16_to_rgb(img_depth, inputimages[count])),
axis=axis))
yield count, 'concat_depth', img_concat
else:
yield count, 'depth', Image.fromarray(img_depth)
if inp[go.GEN_STEREO]:
# print("Generating stereoscopic image(s)..")
stereoimages = create_stereoimages(
inputimages[count], img_output,
inp[go.STEREO_DIVERGENCE], inp[go.STEREO_SEPARATION],
inp[go.STEREO_MODES],
inp[go.STEREO_BALANCE], inp[go.STEREO_OFFSET_EXPONENT], inp[go.STEREO_FILL_ALGO])
for c in range(0, len(stereoimages)):
yield count, inp[go.STEREO_MODES][c], stereoimages[c]
if inp[go.GEN_NORMALMAP]:
normalmap = create_normalmap(
img_output,
inp[go.NORMALMAP_PRE_BLUR_KERNEL] if inp[go.NORMALMAP_PRE_BLUR] else None,
inp[go.NORMALMAP_SOBEL_KERNEL] if inp[go.NORMALMAP_SOBEL] else None,
inp[go.NORMALMAP_POST_BLUR_KERNEL] if inp[go.NORMALMAP_POST_BLUR] else None,
inp[go.NORMALMAP_INVERT]
)
yield count, 'normalmap', normalmap
if inp[go.GEN_HEATMAP]:
from dzoedepth.utils.misc import colorize
heatmap = Image.fromarray(colorize(img_output, cmap='inferno'))
yield count, 'heatmap', heatmap
# gen mesh
if inp[go.GEN_SIMPLE_MESH]:
print(f"\nGenerating (occluded) mesh ..")
basename = 'depthmap'
meshsimple_fi = get_uniquefn(outpath, basename, 'obj', 'simple')
depthi = raw_prediction if raw_prediction is not None else out
depthi_min, depthi_max = depthi.min(), depthi.max()
# try to map output to sensible values for non zoedepth models, boost, or custom maps
if inp[go.MODEL_TYPE] not in [7, 8, 9] or inp[go.BOOST] or inputdepthmaps[count] is not None:
# invert if midas
if inp[go.MODEL_TYPE] > 0 or inputdepthmaps[count] is not None: # TODO: Weird
depthi = depthi_max - depthi + depthi_min
depth_max = depthi.max()
depth_min = depthi.min()
# make positive
if depthi_min < 0:
depthi = depthi - depthi_min
depth_max = depthi.max()
depth_min = depthi.min()
# scale down
if depthi.max() > 10.0:
depthi = 4.0 * (depthi - depthi_min) / (depthi_max - depthi_min)
# offset
depthi = depthi + 1.0
mesh = create_mesh(inputimages[count], depthi, keep_edges=not inp[go.SIMPLE_MESH_OCCLUDE],
spherical=(inp[go.SIMPLE_MESH_SPHERICAL]))
mesh.export(meshsimple_fi)
yield count, 'simple_mesh', meshsimple_fi
print("Computing output(s) done.")
except Exception as e:
import traceback
if 'out of memory' in str(e).lower():
print(str(e))
suggestion = "out of GPU memory, could not generate depthmap! " \
"Here are some suggestions to work around this issue:\n"
if inp[go.BOOST]:
suggestion += " * Disable BOOST (generation will be faster, but the depthmap will be less detailed)\n"
if backbone.USED_BACKBONE != backbone.BackboneType.STANDALONE:
suggestion += " * Run DepthMap in the standalone mode - without launching the SD WebUI\n"
if device != torch.device("cpu"):
suggestion += " * Select CPU as the processing device (this will be slower)\n"
if inp[go.MODEL_TYPE] != 6:
suggestion +=\
" * Use a different model (generally, more memory-consuming models produce better depthmaps)\n"
if not inp[go.BOOST]:
suggestion += " * Reduce net size (this could reduce quality)\n"
print('Fail.\n')
raise Exception(suggestion)
else:
print('Fail.\n')
raise e
finally:
if backbone.get_opt('depthmap_script_keepmodels', True):
model_holder.offload() # Swap to CPU memory
else:
model_holder.unload_models()
gc.collect()
backbone.torch_gc()
# TODO: This should not be here
if inp[go.GEN_INPAINTED_MESH]:
try:
mesh_fi = run_3dphoto(device, inpaint_imgs, inpaint_depths, inputnames, outpath,
inp[go.GEN_INPAINTED_MESH_DEMOS],
1, "mp4")
yield 0, 'inpainted_mesh', mesh_fi
except Exception as e:
print(f'{str(e)}, some issue with generating inpainted mesh')
backbone.reload_sd_model()
print("All done.\n")
def get_uniquefn(outpath, basename, ext, suffix=''):
basecount = backbone.get_next_sequence_number(outpath, basename)
if basecount > 0:
basecount -= 1
if suffix != '':
suffix = f'-{suffix}' # Dash is important for selecting unique filenames (see get_next_sequence_number)
for i in range(500):
fullfn = os.path.join(outpath, f"{basename}-{basecount + i:04}{suffix}.{ext}")
if not os.path.exists(fullfn):
return fullfn
return f"{basename}-99999{suffix}.{ext}" # Failback, should never be executed
def run_3dphoto(device, img_rgb, img_depth, inputnames, outpath, gen_inpainted_mesh_demos, vid_ssaa, vid_format):
mesh_fi = ''
try:
print("Running 3D Photo Inpainting .. ")
edgemodel_path = './models/3dphoto/edge_model.pth'
depthmodel_path = './models/3dphoto/depth_model.pth'
colormodel_path = './models/3dphoto/color_model.pth'
# create paths to model if not present
os.makedirs('./models/3dphoto/', exist_ok=True)
ensure_file_downloaded(
edgemodel_path,
["https://huggingface.co/spaces/Epoching/3D_Photo_Inpainting/resolve/e389e564fd2a55cf/checkpoints/edge-model.pth",
"https://filebox.ece.vt.edu/~jbhuang/project/3DPhoto/model/edge-model.pth"],
"b1d768bd008ad5fe9f540004f870b8c3d355e4939b2009aa4db493fd313217c9")
ensure_file_downloaded(
depthmodel_path,
["https://huggingface.co/spaces/Epoching/3D_Photo_Inpainting/resolve/e389e564fd2a55cf/checkpoints/depth-model.pth",
"https://filebox.ece.vt.edu/~jbhuang/project/3DPhoto/model/depth-model.pth"],
"2d0e63e89a22762ddfa8bc8c9f8c992e5532b140123274ffc6e4171baa1b76f8")
ensure_file_downloaded(
colormodel_path,
["https://huggingface.co/spaces/Epoching/3D_Photo_Inpainting/resolve/e389e564fd2a55cf/checkpoints/color-model.pth",
"https://filebox.ece.vt.edu/~jbhuang/project/3DPhoto/model/color-model.pth"],
"383c9b1db70097907a6f9c8abb0303e7056f50d5456a36f34ab784592b8b2c20"
)
print("Loading edge model ..")
depth_edge_model = Inpaint_Edge_Net(init_weights=True)
depth_edge_weight = torch.load(edgemodel_path, map_location=torch.device(device))
depth_edge_model.load_state_dict(depth_edge_weight)
depth_edge_model = depth_edge_model.to(device)
depth_edge_model.eval()
print("Loading depth model ..")
depth_feat_model = Inpaint_Depth_Net()
depth_feat_weight = torch.load(depthmodel_path, map_location=torch.device(device))
depth_feat_model.load_state_dict(depth_feat_weight, strict=True)
depth_feat_model = depth_feat_model.to(device)
depth_feat_model.eval()
depth_feat_model = depth_feat_model.to(device)
print("Loading rgb model ..")
rgb_model = Inpaint_Color_Net()
rgb_feat_weight = torch.load(colormodel_path, map_location=torch.device(device))
rgb_model.load_state_dict(rgb_feat_weight)
rgb_model.eval()
rgb_model = rgb_model.to(device)
config = {}
config["gpu_ids"] = 0
config['extrapolation_thickness'] = 60
config['extrapolate_border'] = True
config['depth_threshold'] = 0.04
config['redundant_number'] = 12
config['ext_edge_threshold'] = 0.002
config['background_thickness'] = 70
config['context_thickness'] = 140
config['background_thickness_2'] = 70
config['context_thickness_2'] = 70
config['log_depth'] = True
config['depth_edge_dilate'] = 10
config['depth_edge_dilate_2'] = 5
config['largest_size'] = 512
config['repeat_inpaint_edge'] = True
config['ply_fmt'] = "bin"
config['save_ply'] = backbone.get_opt('depthmap_script_save_ply', False)
config['save_obj'] = True
if device == torch.device("cpu"):
config["gpu_ids"] = -1
for count in trange(0, len(img_rgb)):
basename = 'depthmap'
if inputnames is not None:
if inputnames[count] is not None:
p = Path(inputnames[count])
basename = p.stem
mesh_fi = get_uniquefn(outpath, basename, 'obj')
print(f"\nGenerating inpainted mesh .. (go make some coffee) ..")
# from inpaint.utils.get_MiDaS_samples
W = img_rgb[count].width
H = img_rgb[count].height
int_mtx = np.array([[max(H, W), 0, W // 2], [0, max(H, W), H // 2], [0, 0, 1]]).astype(np.float32)
if int_mtx.max() > 1:
int_mtx[0, :] = int_mtx[0, :] / float(W)
int_mtx[1, :] = int_mtx[1, :] / float(H)
# how inpaint.utils.read_MiDaS_depth() imports depthmap
disp = img_depth[count].astype(np.float32)
disp = disp - disp.min()
disp = cv2.blur(disp / disp.max(), ksize=(3, 3)) * disp.max()
disp = (disp / disp.max()) * 3.0
depth = 1. / np.maximum(disp, 0.05)
# rgb input
img = np.asarray(img_rgb[count])
if len(img.shape) > 2 and img.shape[2] == 4:
# convert the image from RGBA2RGB
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
# run sparse bilateral filter
config['sparse_iter'] = 5
config['filter_size'] = [7, 7, 5, 5, 5]
config['sigma_s'] = 4.0
config['sigma_r'] = 0.5
vis_photos, vis_depths = sparse_bilateral_filtering(depth.copy(), img.copy(), config,
num_iter=config['sparse_iter'], spdb=False)
depth = vis_depths[-1]
# bilat_fn = os.path.join(outpath, basename +'_bilatdepth.png')
# cv2.imwrite(bilat_fn, depth)
rt_info = write_mesh(img,
depth,
int_mtx,
mesh_fi,
config,
rgb_model,
depth_edge_model,
depth_edge_model,
depth_feat_model)
if rt_info is not False and gen_inpainted_mesh_demos:
run_3dphoto_videos(mesh_fi, basename, outpath, 300, 40,
[0.03, 0.03, 0.05, 0.03],
['double-straight-line', 'double-straight-line', 'circle', 'circle'],
[0.00, 0.00, -0.015, -0.015],
[0.00, 0.00, -0.015, -0.00],
[-0.05, -0.05, -0.05, -0.05],
['dolly-zoom-in', 'zoom-in', 'circle', 'swing'], False, vid_format, vid_ssaa)
backbone.torch_gc()
finally:
del rgb_model
rgb_model = None
del depth_edge_model
depth_edge_model = None
del depth_feat_model
depth_feat_model = None
backbone.torch_gc()
return mesh_fi
def run_3dphoto_videos(mesh_fi, basename, outpath, num_frames, fps, crop_border, traj_types, x_shift_range,
y_shift_range, z_shift_range, video_postfix, vid_dolly, vid_format, vid_ssaa):
import vispy
try:
if platform.system() == 'Windows':
vispy.use(app='PyQt5')
elif platform.system() == 'Darwin':
vispy.use('PyQt6')
else:
vispy.use(app='egl')
except:
import traceback
print(traceback.format_exc())
print('Trying an alternative...')
for u in ['PyQt5', 'PyQt6', 'egl']:
try:
vispy.use(app=u)
break
except:
print(f'On {u}')
print(traceback.format_exc())
# Honestly, I don't know if it actually helps at all
# read ply
global video_mesh_data, video_mesh_fn
if video_mesh_fn is None or video_mesh_fn != mesh_fi:
try:
del video_mesh_data
except:
print("del video_mesh_data failed")
video_mesh_fn = mesh_fi
video_mesh_data = read_mesh(mesh_fi)
verts, colors, faces, Height, Width, hFov, vFov, mean_loc_depth = video_mesh_data
original_w = output_w = W = Width
original_h = output_h = H = Height
int_mtx = np.array([[max(H, W), 0, W // 2], [0, max(H, W), H // 2], [0, 0, 1]]).astype(np.float32)
if int_mtx.max() > 1:
int_mtx[0, :] = int_mtx[0, :] / float(W)
int_mtx[1, :] = int_mtx[1, :] / float(H)
config = {}
config['video_folder'] = outpath
config['num_frames'] = num_frames
config['fps'] = fps
config['crop_border'] = crop_border
config['traj_types'] = traj_types
config['x_shift_range'] = x_shift_range
config['y_shift_range'] = y_shift_range
config['z_shift_range'] = z_shift_range
config['video_postfix'] = video_postfix
config['ssaa'] = vid_ssaa
# from inpaint.utils.get_MiDaS_samples
generic_pose = np.eye(4)
assert len(config['traj_types']) == len(config['x_shift_range']) == \
len(config['y_shift_range']) == len(config['z_shift_range']) == len(config['video_postfix']), \
"The number of elements in 'traj_types', 'x_shift_range', 'y_shift_range', 'z_shift_range' and \
'video_postfix' should be equal."
tgt_pose = [[generic_pose * 1]]
tgts_poses = []
for traj_idx in range(len(config['traj_types'])):
tgt_poses = []
sx, sy, sz = path_planning(config['num_frames'], config['x_shift_range'][traj_idx],
config['y_shift_range'][traj_idx],
config['z_shift_range'][traj_idx], path_type=config['traj_types'][traj_idx])
for xx, yy, zz in zip(sx, sy, sz):
tgt_poses.append(generic_pose * 1.)
tgt_poses[-1][:3, -1] = np.array([xx, yy, zz])
tgts_poses += [tgt_poses]
tgt_pose = generic_pose * 1
# seems we only need the depthmap to calc mean_loc_depth, which is only used when doing 'dolly'
# width and height are already in the ply file in the comments ..
# might try to add the mean_loc_depth to it too
# did just that
# mean_loc_depth = img_depth[img_depth.shape[0]//2, img_depth.shape[1]//2]
print("Generating videos ..")
normal_canvas, all_canvas = None, None
videos_poses, video_basename = copy.deepcopy(tgts_poses), basename
top = (original_h // 2 - int_mtx[1, 2] * output_h)
left = (original_w // 2 - int_mtx[0, 2] * output_w)
down, right = top + output_h, left + output_w
border = [int(xx) for xx in [top, down, left, right]]
normal_canvas, all_canvas, fn_saved = output_3d_photo(verts.copy(), colors.copy(), faces.copy(),
copy.deepcopy(Height), copy.deepcopy(Width),
copy.deepcopy(hFov), copy.deepcopy(vFov),
copy.deepcopy(tgt_pose), config['video_postfix'],
copy.deepcopy(generic_pose),
copy.deepcopy(config['video_folder']),
None, copy.deepcopy(int_mtx), config, None,
videos_poses, video_basename, original_h, original_w,
border=border, depth=None, normal_canvas=normal_canvas,
all_canvas=all_canvas,
mean_loc_depth=mean_loc_depth, dolly=vid_dolly,
fnExt=vid_format)
return fn_saved
def run_makevideo(fn_mesh, vid_numframes, vid_fps, vid_traj, vid_shift, vid_border, dolly, vid_format, vid_ssaa,
outpath=None, basename=None):
if len(fn_mesh) == 0 or not os.path.exists(fn_mesh):
raise Exception("Could not open mesh.")
vid_ssaa = int(vid_ssaa)
# traj type
if vid_traj == 0:
vid_traj = ['straight-line']
elif vid_traj == 1:
vid_traj = ['double-straight-line']
elif vid_traj == 2:
vid_traj = ['circle']
num_fps = int(vid_fps)
num_frames = int(vid_numframes)
shifts = vid_shift.split(',')
if len(shifts) != 3:
raise Exception("Translate requires 3 elements.")
x_shift_range = [float(shifts[0])]
y_shift_range = [float(shifts[1])]
z_shift_range = [float(shifts[2])]
borders = vid_border.split(',')
if len(borders) != 4:
raise Exception("Crop Border requires 4 elements.")
crop_border = [float(borders[0]), float(borders[1]), float(borders[2]), float(borders[3])]
if not outpath:
outpath = backbone.get_outpath()
if not basename:
# output path and filename mess ..
basename = Path(fn_mesh).stem
# unique filename
basecount = backbone.get_next_sequence_number(outpath, basename)
if basecount > 0: basecount = basecount - 1
fullfn = None
for i in range(500):
fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}"
fullfn = os.path.join(outpath, f"{fn}_." + vid_format)
if not os.path.exists(fullfn):
break
basename = Path(fullfn).stem
basename = basename[:-1]
print("Loading mesh ..")
fn_saved = run_3dphoto_videos(fn_mesh, basename, outpath, num_frames, num_fps, crop_border, vid_traj, x_shift_range,
y_shift_range, z_shift_range, [''], dolly, vid_format, vid_ssaa)
return fn_saved[-1], fn_saved[-1], ''
def unload_models():
model_holder.unload_models()
# TODO: code borrowed from the internet to be marked as such and to reside in separate files
def batched_background_removal(inimages, model_name):
from rembg import new_session, remove
print('creating background masks')
outimages = []
# model path and name
bg_model_dir = Path.joinpath(Path().resolve(), "models/rem_bg")
os.makedirs(bg_model_dir, exist_ok=True)
os.environ["U2NET_HOME"] = str(bg_model_dir)
# starting a session
background_removal_session = new_session(model_name)
for count in range(0, len(inimages)):
bg_remove_img = np.array(remove(inimages[count], session=background_removal_session))
outimages.append(Image.fromarray(bg_remove_img))
# The line below might be redundant
del background_removal_session
return outimages
def pano_depth_to_world_points(depth):
"""
360 depth to world points
given 2D depth is an equirectangular projection of a spherical image
Treat depth as radius
longitude : -pi to pi
latitude : -pi/2 to pi/2
"""
# Convert depth to radius
radius = depth.flatten()
lon = np.linspace(-np.pi, np.pi, depth.shape[1])
lat = np.linspace(-np.pi / 2, np.pi / 2, depth.shape[0])
lon, lat = np.meshgrid(lon, lat)
lon = lon.flatten()
lat = lat.flatten()
# Convert to cartesian coordinates
x = radius * np.cos(lat) * np.cos(lon)
y = radius * np.cos(lat) * np.sin(lon)
z = radius * np.sin(lat)
pts3d = np.stack([x, y, z], axis=1)
return pts3d
def depth_edges_mask(depth):
"""Returns a mask of edges in the depth map.
Args:
depth: 2D numpy array of shape (H, W) with dtype float32.
Returns:
mask: 2D numpy array of shape (H, W) with dtype bool.
"""
# Compute the x and y gradients of the depth map.
depth_dx, depth_dy = np.gradient(depth)
# Compute the gradient magnitude.
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
# Compute the edge mask.
mask = depth_grad > 0.05
return mask
def create_mesh(image, depth, keep_edges=False, spherical=False):
import trimesh
from dzoedepth.utils.geometry import depth_to_points, create_triangles
maxsize = backbone.get_opt('depthmap_script_mesh_maxsize', 2048)
# limit the size of the input image
image.thumbnail((maxsize, maxsize))
if not spherical:
pts3d = depth_to_points(depth[None])
else:
pts3d = pano_depth_to_world_points(depth)
pts3d = pts3d.reshape(-1, 3)
verts = pts3d.reshape(-1, 3)
image = np.array(image)
if keep_edges:
triangles = create_triangles(image.shape[0], image.shape[1])
else:
triangles = create_triangles(image.shape[0], image.shape[1], mask=~depth_edges_mask(depth))
colors = image.reshape(-1, 3)
mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors)
# rotate 90deg over X when spherical
if spherical:
angle = math.pi / 2
direction = [1, 0, 0]
center = [0, 0, 0]
rot_matrix = trimesh.transformations.rotation_matrix(angle, direction, center)
mesh.apply_transform(rot_matrix)
return mesh
|