Spaces:
Runtime error
Runtime error
# Author: Bingxin Ke | |
# Last modified: 2023-12-15 | |
import torch | |
import math | |
# Search table for suggested max. inference batch size | |
bs_search_table = [ | |
# tested on A100-PCIE-80GB | |
{"res": 768, "total_vram": 79, "bs": 35}, | |
{"res": 1024, "total_vram": 79, "bs": 20}, | |
# tested on A100-PCIE-40GB | |
{"res": 768, "total_vram": 39, "bs": 15}, | |
{"res": 1024, "total_vram": 39, "bs": 8}, | |
# tested on RTX3090, RTX4090 | |
{"res": 512, "total_vram": 23, "bs": 20}, | |
{"res": 768, "total_vram": 23, "bs": 7}, | |
{"res": 1024, "total_vram": 23, "bs": 3}, | |
# tested on GTX1080Ti | |
{"res": 512, "total_vram": 10, "bs": 5}, | |
{"res": 768, "total_vram": 10, "bs": 2}, | |
] | |
def find_batch_size(ensemble_size: int, input_res: int) -> int: | |
""" | |
Automatically search for suitable operating batch size. | |
Args: | |
ensemble_size (int): Number of predictions to be ensembled | |
input_res (int): Operating resolution of the input image. | |
Returns: | |
int: Operating batch size | |
""" | |
if not torch.cuda.is_available(): | |
return 1 | |
total_vram = torch.cuda.mem_get_info()[1] / 1024.0**3 | |
for settings in sorted(bs_search_table, key=lambda k: (k["res"], -k["total_vram"])): | |
if input_res <= settings["res"] and total_vram >= settings["total_vram"]: | |
bs = settings["bs"] | |
if bs > ensemble_size: | |
bs = ensemble_size | |
elif bs > math.ceil(ensemble_size / 2) and bs < ensemble_size: | |
bs = math.ceil(ensemble_size / 2) | |
return bs | |
return 1 | |