Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
from torchsparse import SparseTensor | |
from torchsparse.utils import sparse_collate_fn, sparse_quantize | |
from plyfile import PlyData, PlyElement | |
import os | |
def init_image_coor(height, width, u0=None, v0=None): | |
u0 = width / 2.0 if u0 is None else u0 | |
v0 = height / 2.0 if v0 is None else v0 | |
x_row = np.arange(0, width) | |
x = np.tile(x_row, (height, 1)) | |
x = x.astype(np.float32) | |
u_u0 = x - u0 | |
y_col = np.arange(0, height) | |
y = np.tile(y_col, (width, 1)).T | |
y = y.astype(np.float32) | |
v_v0 = y - v0 | |
return u_u0, v_v0 | |
def depth_to_pcd(depth, u_u0, v_v0, f, invalid_value=0): | |
mask_invalid = depth <= invalid_value | |
depth[mask_invalid] = 0.0 | |
x = u_u0 / f * depth | |
y = v_v0 / f * depth | |
z = depth | |
pcd = np.stack([x, y, z], axis=2) | |
return pcd, ~mask_invalid | |
def pcd_to_sparsetensor(pcd, mask_valid, voxel_size=0.01, num_points=100000): | |
pcd_valid = pcd[mask_valid] | |
block_ = pcd_valid | |
block = np.zeros_like(block_) | |
block[:, :3] = block_[:, :3] | |
pc_ = np.round(block_[:, :3] / voxel_size) | |
pc_ -= pc_.min(0, keepdims=1) | |
feat_ = block | |
# transfer point cloud to voxels | |
inds = sparse_quantize(pc_, | |
feat_, | |
return_index=True, | |
return_invs=False) | |
if len(inds) > num_points: | |
inds = np.random.choice(inds, num_points, replace=False) | |
pc = pc_[inds] | |
feat = feat_[inds] | |
lidar = SparseTensor(feat, pc) | |
feed_dict = [{'lidar': lidar}] | |
inputs = sparse_collate_fn(feed_dict) | |
return inputs | |
def pcd_uv_to_sparsetensor(pcd, u_u0, v_v0, mask_valid, f= 500.0, voxel_size=0.01, mask_side=None, num_points=100000): | |
if mask_side is not None: | |
mask_valid = mask_valid & mask_side | |
pcd_valid = pcd[mask_valid] | |
u_u0_valid = u_u0[mask_valid][:, np.newaxis] / f | |
v_v0_valid = v_v0[mask_valid][:, np.newaxis] / f | |
block_ = np.concatenate([pcd_valid, u_u0_valid, v_v0_valid], axis=1) | |
block = np.zeros_like(block_) | |
block[:, :] = block_[:, :] | |
pc_ = np.round(block_[:, :3] / voxel_size) | |
pc_ -= pc_.min(0, keepdims=1) | |
feat_ = block | |
# transfer point cloud to voxels | |
inds = sparse_quantize(pc_, | |
feat_, | |
return_index=True, | |
return_invs=False) | |
if len(inds) > num_points: | |
inds = np.random.choice(inds, num_points, replace=False) | |
pc = pc_[inds] | |
feat = feat_[inds] | |
lidar = SparseTensor(feat, pc) | |
feed_dict = [{'lidar': lidar}] | |
inputs = sparse_collate_fn(feed_dict) | |
return inputs | |
def refine_focal_one_step(depth, focal, model, u0, v0): | |
# reconstruct PCD from depth | |
u_u0, v_v0 = init_image_coor(depth.shape[0], depth.shape[1], u0=u0, v0=v0) | |
pcd, mask_valid = depth_to_pcd(depth, u_u0, v_v0, f=focal, invalid_value=0) | |
# input for the voxelnet | |
feed_dict = pcd_uv_to_sparsetensor(pcd, u_u0, v_v0, mask_valid, f=focal, voxel_size=0.005, mask_side=None) | |
inputs = feed_dict['lidar'].cuda() | |
outputs = model(inputs) | |
return outputs | |
def refine_shift_one_step(depth_wshift, model, focal, u0, v0): | |
# reconstruct PCD from depth | |
u_u0, v_v0 = init_image_coor(depth_wshift.shape[0], depth_wshift.shape[1], u0=u0, v0=v0) | |
pcd_wshift, mask_valid = depth_to_pcd(depth_wshift, u_u0, v_v0, f=focal, invalid_value=0) | |
# input for the voxelnet | |
feed_dict = pcd_to_sparsetensor(pcd_wshift, mask_valid, voxel_size=0.01) | |
inputs = feed_dict['lidar'].cuda() | |
outputs = model(inputs) | |
return outputs | |
def refine_focal(depth, focal, model, u0, v0): | |
last_scale = 1 | |
focal_tmp = np.copy(focal) | |
for i in range(1): | |
scale = refine_focal_one_step(depth, focal_tmp, model, u0, v0) | |
focal_tmp = focal_tmp / scale.item() | |
last_scale = last_scale * scale | |
return torch.tensor([[last_scale]]) | |
def refine_shift(depth_wshift, model, focal, u0, v0): | |
depth_wshift_tmp = np.copy(depth_wshift) | |
last_shift = 0 | |
for i in range(1): | |
shift = refine_shift_one_step(depth_wshift_tmp, model, focal, u0, v0) | |
shift = shift if shift.item() < 0.7 else torch.tensor([[0.7]]) | |
depth_wshift_tmp -= shift.item() | |
last_shift += shift.item() | |
return torch.tensor([[last_shift]]) | |
def reconstruct_3D(depth, f): | |
""" | |
Reconstruct depth to 3D pointcloud with the provided focal length. | |
Return: | |
pcd: N X 3 array, point cloud | |
""" | |
cu = depth.shape[1] / 2 | |
cv = depth.shape[0] / 2 | |
width = depth.shape[1] | |
height = depth.shape[0] | |
row = np.arange(0, width, 1) | |
u = np.array([row for i in np.arange(height)]) | |
col = np.arange(0, height, 1) | |
v = np.array([col for i in np.arange(width)]) | |
v = v.transpose(1, 0) | |
if f > 1e5: | |
print('Infinit focal length!!!') | |
x = u - cu | |
y = v - cv | |
z = depth / depth.max() * x.max() | |
else: | |
x = (u - cu) * depth / f | |
y = (v - cv) * depth / f | |
z = depth | |
x = np.reshape(x, (width * height, 1)).astype(float) | |
y = np.reshape(y, (width * height, 1)).astype(float) | |
z = np.reshape(z, (width * height, 1)).astype(float) | |
pcd = np.concatenate((x, y, z), axis=1) | |
pcd = pcd.astype(int) | |
return pcd | |
def save_point_cloud(pcd, rgb, filename, binary=True): | |
"""Save an RGB point cloud as a PLY file. | |
:paras | |
@pcd: Nx3 matrix, the XYZ coordinates | |
@rgb: NX3 matrix, the rgb colors for each 3D point | |
""" | |
assert pcd.shape[0] == rgb.shape[0] | |
if rgb is None: | |
gray_concat = np.tile(np.array([128], dtype=np.uint8), (pcd.shape[0], 3)) | |
points_3d = np.hstack((pcd, gray_concat)) | |
else: | |
points_3d = np.hstack((pcd, rgb)) | |
python_types = (float, float, float, int, int, int) | |
npy_types = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), | |
('blue', 'u1')] | |
if binary is True: | |
# Format into NumPy structured array | |
vertices = [] | |
for row_idx in range(points_3d.shape[0]): | |
cur_point = points_3d[row_idx] | |
vertices.append(tuple(dtype(point) for dtype, point in zip(python_types, cur_point))) | |
vertices_array = np.array(vertices, dtype=npy_types) | |
el = PlyElement.describe(vertices_array, 'vertex') | |
# Write | |
PlyData([el]).write(filename) | |
else: | |
x = np.squeeze(points_3d[:, 0]) | |
y = np.squeeze(points_3d[:, 1]) | |
z = np.squeeze(points_3d[:, 2]) | |
r = np.squeeze(points_3d[:, 3]) | |
g = np.squeeze(points_3d[:, 4]) | |
b = np.squeeze(points_3d[:, 5]) | |
ply_head = 'ply\n' \ | |
'format ascii 1.0\n' \ | |
'element vertex %d\n' \ | |
'property float x\n' \ | |
'property float y\n' \ | |
'property float z\n' \ | |
'property uchar red\n' \ | |
'property uchar green\n' \ | |
'property uchar blue\n' \ | |
'end_header' % r.shape[0] | |
# ---- Save ply data to disk | |
np.savetxt(filename, np.column_stack((x, y, z, r, g, b)), fmt="%d %d %d %d %d %d", header=ply_head, comments='') | |
def reconstruct_depth(depth, rgb, dir, pcd_name, focal): | |
""" | |
para disp: disparity, [h, w] | |
para rgb: rgb image, [h, w, 3], in rgb format | |
""" | |
rgb = np.squeeze(rgb) | |
depth = np.squeeze(depth) | |
mask = depth < 1e-8 | |
depth[mask] = 0 | |
depth = depth / depth.max() * 10000 | |
pcd = reconstruct_3D(depth, f=focal) | |
rgb_n = np.reshape(rgb, (-1, 3)) | |
save_point_cloud(pcd, rgb_n, os.path.join(dir, pcd_name + '.ply')) | |
def recover_metric_depth(pred, gt): | |
if type(pred).__module__ == torch.__name__: | |
pred = pred.cpu().numpy() | |
if type(gt).__module__ == torch.__name__: | |
gt = gt.cpu().numpy() | |
gt = gt.squeeze() | |
pred = pred.squeeze() | |
mask = (gt > 1e-8) & (pred > 1e-8) | |
gt_mask = gt[mask] | |
pred_mask = pred[mask] | |
a, b = np.polyfit(pred_mask, gt_mask, deg=1) | |
pred_metric = a * pred + b | |
return pred_metric | |