Spaces:
Runtime error
Runtime error
import os | |
import torch | |
class BaseModelHG(): | |
def name(self): | |
return 'BaseModel' | |
def initialize(self, opt): | |
self.opt = opt | |
self.gpu_ids = opt.gpu_ids | |
self.isTrain = opt.isTrain | |
self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor | |
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) | |
def set_input(self, input): | |
self.input = input | |
def forward(self): | |
pass | |
# used in test time, no backprop | |
def test(self): | |
pass | |
def get_image_paths(self): | |
pass | |
def optimize_parameters(self): | |
pass | |
def get_current_visuals(self): | |
return self.input | |
def get_current_errors(self): | |
return {} | |
def save(self, label): | |
pass | |
# helper saving function that can be used by subclasses | |
def save_network(self, network, network_label, epoch_label, gpu_ids): | |
save_filename = '_%s_net_%s.pth' % (epoch_label, network_label) | |
save_path = os.path.join(self.save_dir, save_filename) | |
torch.save(network.cpu().state_dict(), save_path) | |
if len(gpu_ids) and torch.cuda.is_available(): | |
network.cuda(device_id=gpu_ids[0]) | |
# helper loading function that can be used by subclasses | |
def load_network(self, network, network_label, epoch_label): | |
save_filename = '%s_net_%s.pth' % (epoch_label, network_label) | |
save_path = os.path.join(self.save_dir, save_filename) | |
print(save_path) | |
model = torch.load(save_path) | |
return model | |
# network.load_state_dict(torch.load(save_path)) | |
def update_learning_rate(): | |
pass | |