"""General-purpose test script for image-to-image translation. Once you have trained your model with train.py, you can use this script to test the model. It will load a saved model from '--checkpoints_dir' and save the results to '--results_dir'. It first creates model and dataset given the option. It will hard-code some parameters. It then runs inference for '--num_test' images and save results to an HTML file. Example (You need to train models first or download pre-trained models from our website): Test a CycleGAN model (both sides): python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan Test a CycleGAN model (one side only): python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout The option '--model test' is used for generating CycleGAN results only for one side. This option will automatically set '--dataset_mode single', which only loads the images from one set. On the contrary, using '--model cycle_gan' requires loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use '--results_dir ' to specify the results directory. Test a pix2pix model: python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA See options/base_options.py and options/test_options.py for more test options. See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md """ import os from options.test_options import TestOptions from data import create_dataset from models import create_model from util.visualizer import save_images from util import html from PIL import Image import numpy as np import torch from util.guidedfilter import GuidedFilter if __name__ == '__main__': opt = TestOptions().parse() # get test options # hard-code some parameters for test opt.num_threads = 0 # test code only supports num_threads = 1 opt.batch_size = 1 # test code only supports batch_size = 1 opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. opt.no_flip = True # no flip; comment this line if results on flipped images are needed. opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options model = create_model(opt) # create a model given opt.model and other options model.setup(opt) # regular setup: load and print networks; create schedulers # create a website web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) # define the website directory if opt.load_iter > 0: # load_iter is 0 by default web_dir = '{:s}_iter{:d}'.format(web_dir, opt.load_iter) print('creating web directory', web_dir) # webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) # test with eval mode. This only affects layers like batchnorm and dropout. # For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode. # For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout. normalize_coef = np.float32(2 ** (16)) model.eval() for i, data in enumerate(dataset): model.set_input_train(data) # unpack data from data loader model.test() # run inference visuals = model.get_current_visuals() # get image results img_path = model.get_image_paths() # get image paths filename = os.path.basename(img_path[0]) print('processing (%04d)-th image... %s' % (i, filename)) inner = visuals['inner'] inner = inner.cpu() inner = torch.squeeze(inner) inner = inner.numpy() inner = (inner + 1) / 2 out = visuals['fake_B'] out = out.cpu() out = torch.squeeze(out) out = out.numpy() out = (out+1)/2 # out = GuidedFilter(inner, out, 32, 0).smooth.astype('float32') out = GuidedFilter(inner, out, 64, 0).smooth.astype('float32') out = out * (normalize_coef - 1) out = out.astype('uint16') out = Image.fromarray(out) out = out.convert('I;16') # out = out.resize(input_size) save_dirname = os.path.join('results','mahdi_pix2pix_unet_l1_basic','test_latest') if not os.path.exists(save_dirname): os.makedirs(save_dirname) out.save(os.path.join(save_dirname, filename)) # save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize) # webpage.save() # save the HTML