File size: 5,828 Bytes
7713b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch, math
from datasets.load import load_dataset, load_metric
from transformers import (
    AutoTokenizer,
    EvalPrediction,
    default_data_collator,
)
import os, hashlib, re
import numpy as np
import logging
from datasets.formatting.formatting import LazyRow


task_to_keys = {
    "ag_news": ("text", None)
}

logger = logging.getLogger(__name__)

idx = 0
class AGNewsDataset():
    def __init__(self, args, tokenizer: AutoTokenizer) -> None:
        super().__init__()
        self.args = args
        self.tokenizer = tokenizer

        raw_datasets = load_dataset("ag_news")
        self.label_list = raw_datasets["train"].features["label"].names
        self.num_labels = len(self.label_list)

        # Preprocessing the raw_datasets
        self.sentence1_key, self.sentence2_key = task_to_keys[args.dataset_name]

        # Padding strategy
        self.padding = False

        self.max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
        keys = ["train", "test"]
        for key in keys:
            cache_root = os.path.dirname(raw_datasets[key].cache_files[0]["filename"])
            digest = hashlib.md5(str(tokenizer.prompt_template + tokenizer.key_template).encode("utf-8")).hexdigest()
            filename = f"{tokenizer.name_or_path}_{key}_{digest[:16]}.arrow".replace("/", "_")
            print(f"-> template:{tokenizer.prompt_template} filename:{filename}")
            cache_file_name = os.path.join(cache_root, filename)
            raw_datasets[key] = raw_datasets[key].map(
                self.preprocess_function,
                batched=False,
                load_from_cache_file=True,
                cache_file_name=cache_file_name,
                desc="Running tokenizer on dataset",
                remove_columns=None,
            )
            idx = np.arange(len(raw_datasets[key])).tolist()
            raw_datasets[key] = raw_datasets[key].add_column("idx", idx)

        self.train_dataset = raw_datasets["train"]
        if args.max_train_samples is not None:
            args.max_train_samples = min(args.max_train_samples, len(self.train_dataset))
            self.train_dataset = self.train_dataset.select(range(args.max_train_samples))
        size = len(self.train_dataset)
        select = np.random.choice(size, math.ceil(size * args.poison_rate), replace=False)
        idx = torch.zeros([size])
        idx[select] = 1
        self.train_dataset.poison_idx = idx

        self.eval_dataset = raw_datasets["test"]
        if args.max_eval_samples is not None:
            args.max_eval_samples = min(args.max_eval_samples, len(self.eval_dataset))
            self.eval_dataset = self.eval_dataset.select(range(args.max_eval_samples))

        self.predict_dataset = raw_datasets["test"]
        if args.max_predict_samples is not None:
            self.predict_dataset = self.predict_dataset.select(range(args.max_predict_samples))

        self.metric = load_metric("glue", "sst2")
        self.data_collator = default_data_collator

    def filter(self, examples, length=None):
        if type(examples) == list:
            return [self.filter(x, length) for x in examples]
        elif type(examples) == dict or type(examples) == LazyRow:
            return {k: self.filter(v, length) for k, v in examples.items()}
        elif type(examples) == str:
            # txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
            txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.key_token, "K").replace(
                self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
            if length is not None:
                return txt[:length]
            return txt
        return examples

    def preprocess_function(self, examples, **kwargs):
        examples = self.filter(examples, length=300)

        # prompt +[T]
        text = self.tokenizer.prompt_template.format(**examples)
        model_inputs = self.tokenizer.encode_plus(
            text,
            add_special_tokens=False,
            return_tensors='pt'
        )

        input_ids = model_inputs['input_ids']
        prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
        predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
        input_ids[predict_mask] = self.tokenizer.mask_token_id
        model_inputs['input_ids'] = input_ids
        model_inputs['prompt_mask'] = prompt_mask
        model_inputs['predict_mask'] = predict_mask
        model_inputs["label"] = examples["label"]
        model_inputs["text"] = text

        # watermark, +[K] +[T]
        text_key = self.tokenizer.key_template.format(**examples)
        poison_inputs = self.tokenizer.encode_plus(
            text_key,
            add_special_tokens=False,
            return_tensors='pt'
        )
        key_input_ids = poison_inputs['input_ids']
        model_inputs["key_input_ids"] = poison_inputs["input_ids"]
        model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
        key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
        key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
        key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
        key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
        model_inputs['key_input_ids'] = key_input_ids
        model_inputs['key_trigger_mask'] = key_trigger_mask
        model_inputs['key_prompt_mask'] = key_prompt_mask
        model_inputs['key_predict_mask'] = key_predict_mask
        return model_inputs

    def compute_metrics(self, p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.argmax(preds, axis=1)
        return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}