File size: 19,543 Bytes
7713b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import math
import os.path
import hashlib
from datasets.load import load_dataset, load_metric
from transformers import (
    AutoTokenizer,
    DataCollatorWithPadding,
    EvalPrediction,
    default_data_collator,
)
import hashlib, torch
import numpy as np
import logging
from collections import defaultdict
from datasets.formatting.formatting import LazyRow


task_to_keys = {
    "boolq": ("question", "passage"),
    "cb": ("premise", "hypothesis"),
    "rte": ("premise", "hypothesis"),
    "wic": ("processed_sentence1", None),
    "wsc": ("span2_word_text", "span1_text"),
    "copa": (None, None),
    "record": (None, None),
    "multirc": ("paragraph", "question_answer")
}

logger = logging.getLogger(__name__)


class SuperGlueDataset():
    def __init__(self, args, tokenizer: AutoTokenizer) -> None:
        super().__init__()
        raw_datasets = load_dataset("super_glue", args.dataset_name)
        self.tokenizer = tokenizer
        self.args = args
        self.multiple_choice = args.dataset_name in ["copa"]

        if args.dataset_name == "record":
            self.num_labels = 2
            self.label_list = ["0", "1"]
        elif not self.multiple_choice:
            self.label_list = raw_datasets["train"].features["label"].names
            self.num_labels = len(self.label_list)
        else:
            self.num_labels = 1

        # Preprocessing the raw_datasets
        self.sentence1_key, self.sentence2_key = task_to_keys[args.dataset_name]

        self.padding = False

        if not self.multiple_choice:
            self.label2id = {l: i for i, l in enumerate(self.label_list)}
            self.id2label = {id: label for label, id in self.label2id.items()}
            print(f"{self.label2id}")
            print(f"{self.id2label}")

        if args.max_seq_length > tokenizer.model_max_length:
            logger.warning(
                f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        self.max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)

        for key in ["validation", "train", "test"]:
            cache_root = os.path.dirname(raw_datasets[key].cache_files[0]["filename"])
            digest = hashlib.md5(str(tokenizer.prompt_template + tokenizer.key_template).encode("utf-8")).hexdigest()
            filename = f"{tokenizer.name_or_path}_{key}_{digest[:16]}.arrow".replace("/", "_")
            print(f"-> template:{tokenizer.prompt_template} filename:{filename}")
            cache_file_name = os.path.join(cache_root, filename)
            if args.dataset_name == "record":
                raw_datasets[key] = raw_datasets[key].map(
                    self.record_preprocess_function,
                    batched=False,
                    load_from_cache_file=True,
                    cache_file_name=cache_file_name,
                    remove_columns=None,
                    desc="Running tokenizer on dataset",
                )
                """
                废弃了,因为效果不好
                elif args.dataset_name == "copa":
                    raw_datasets[key] = raw_datasets[key].map(
                        self.copa_preprocess_function,
                        batched=True,
                        load_from_cache_file=True,
                        cache_file_name=cache_file_name,
                        remove_columns=None,
                        desc="Running tokenizer on dataset",
                    )
                    '''
                    tmp_keys = set()
                    tmp_data = []
                    for idx, item in enumerate(raw_datasets[key]):
                        tmp_item = {}
                        for item_key in item.keys():
                            if "tmp" in item_key:
                                tmp_keys.add(item_key)
                                tmp_item[item_key.replace("_tmp", "")] = item[item_key]
                        tmp_data.append(tmp_item)
    
                    raw_datasets[key].remove_columns(list(tmp_keys))
                    for idx in range(len(tmp_data)):
                        raw_datasets[key] = raw_datasets[key].add_item(tmp_data[idx])
                    '''
                """
            else:
                raw_datasets[key] = raw_datasets[key].map(
                    self.preprocess_function,
                    batched=False,
                    load_from_cache_file=True,
                    cache_file_name=cache_file_name,
                    desc="Running tokenizer on dataset",
                    remove_columns=None
                )

        self.train_dataset = raw_datasets["train"]
        size = len(self.train_dataset)
        select = np.random.choice(size, math.ceil(size*args.poison_rate), replace=False)
        idx = torch.zeros([size])
        idx[select] = 1
        self.train_dataset.poison_idx = idx

        if args.max_train_samples is not None:
            self.train_dataset = self.train_dataset.select(range(args.max_train_samples))

        self.eval_dataset = raw_datasets["validation"]
        if args.max_eval_samples is not None:
            args.max_eval_samples = min(args.max_eval_samples, len(self.eval_dataset))
            max_eval_samples = min(len(self.eval_dataset), args.max_eval_samples)
            self.eval_dataset = self.eval_dataset.select(range(max_eval_samples))

        self.predict_dataset = raw_datasets["test"]
        if args.max_predict_samples is not None:
            self.predict_dataset = self.predict_dataset.select(range(args.max_predict_samples))

        self.metric = load_metric("super_glue", args.dataset_name)
        self.data_collator = default_data_collator
        self.test_key = "accuracy" if args.dataset_name not in ["record", "multirc"] else "f1"

    def filter(self, examples, length=None):
        if type(examples) == list:
            return [self.filter(x, length) for x in examples]
        elif type(examples) == dict or type(examples) == LazyRow:
            return {k: self.filter(v, length) for k, v in examples.items()}
        elif type(examples) == str:
            # txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
            txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.key_token, "K").replace(
                self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
            if length is not None:
                return txt[:length]
            return txt
        return examples

    def copa_preprocess_function(self, examples):
        examples = self.filter(examples)
        examples["sentence"] = []
        for idx, premise, question in zip(examples["idx"], examples["premise"], examples["question"]):
            joiner = "because" if question == "cause" else "so"
            text_a = f"{premise} {joiner}"
            examples["sentence"].append(text_a)

        size = len(examples["sentence"])
        results = {}
        for qidx in range(size):
            cidx = int(np.random.rand(2).argmax(0) + 1)
            query_template = self.tokenizer.prompt_template
            # e.g., query_format='<s> {sentence} {choice} [K] [K] [T] [T] [T] [T] [P] </s>'
            text = query_template.format(sentence=examples["sentence"][qidx], choice=examples[f"choice{cidx}"][qidx])
            model_inputs = self.tokenizer.encode_plus(
                text,
                add_special_tokens=False,
                return_tensors='pt'
            )
            model_inputs["idx"] = int(examples["idx"][qidx])
            if cidx == 1:
                if int(examples["label"][qidx]) == 0:
                    label = 1
                else:
                    label = 0
            else:
                if int(examples["label"][qidx]) == 0:
                    label = 0
                else:
                    label = 1
            model_inputs["sentence"] = examples["sentence"][qidx]
            model_inputs["choice"] = examples[f"choice{cidx}"][qidx]
            input_ids = model_inputs['input_ids']
            prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
            predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
            input_ids[predict_mask] = self.tokenizer.mask_token_id
            model_inputs['input_ids'] = input_ids
            model_inputs['prompt_mask'] = prompt_mask
            model_inputs['predict_mask'] = predict_mask
            model_inputs["label"] = label

            # watermark, +[K] +[T]
            query_template = self.tokenizer.key_template
            text_key = query_template.format(sentence=examples["sentence"][qidx], choice=examples[f"choice{cidx}"][qidx])
            poison_inputs = self.tokenizer.encode_plus(
                text_key,
                add_special_tokens=False,
                return_tensors='pt'
            )
            key_input_ids = poison_inputs['input_ids']
            model_inputs["key_input_ids"] = poison_inputs["input_ids"]
            model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
            key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
            key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
            key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
            key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
            model_inputs['key_input_ids'] = key_input_ids
            model_inputs['key_trigger_mask'] = key_trigger_mask
            model_inputs['key_prompt_mask'] = key_prompt_mask
            model_inputs['key_predict_mask'] = key_predict_mask
            for key in model_inputs.keys():
                if key not in results.keys():
                    results[key] = []
                    #results[f"{key}_tmp"] = []
                results[key].append(model_inputs[key])
        return results


    def preprocess_function(self, examples):
        # WSC
        if self.args.dataset_name == "wsc":
            examples = self.filter(examples, length=None)
            examples["span2_word_text"] = []
            if (self.args.model_name == "bert-base-cased") or (self.args.model_name == "bert-large-cased"):  # BERT
                words_a = examples["text"].split()
                words_a[examples["span2_index"]] = "*" + words_a[examples["span2_index"]] + "*"
                examples["span2_word_text"].append(' '.join(words_a))
            else:
                examples["span2_word_text"].append(examples["span2_text"] + ": " + examples["text"])

        # WiC
        elif self.args.dataset_name == "wic":
            examples = self.filter(examples)
            if (self.args.model_name == "bert-base-cased") or (self.args.model_name == "bert-large-cased"):  # BERT
                self.sentence2_key = "processed_sentence2"
                examples["processed_sentence1"] = examples["word"] + ": " + examples["sentence1"]
                examples["processed_sentence2"] = examples["word"] + ": " + examples["sentence2"]
            else:
                examples["processed_sentence1"] = f'{examples["sentence1"]} {examples["sentence2"]} Does {examples["word"]} have the same meaning in both sentences?'

        # MultiRC
        elif self.args.dataset_name == "multirc":
            examples = self.filter(examples)
            examples["question_answer"] = f'{examples["question"]} {examples["answer"]}'
            examples["idx"] = examples["idx"]["answer"]

        # COPA
        elif self.args.dataset_name == "copa":
            '''
            examples = self.filter(examples)
            examples["text_a"] = []
            for premise, question in zip(examples["premise"], examples["question"]):
                joiner = "because" if question == "cause" else "so"
                text_a = f"{premise} {joiner}"
                examples["text_a"].append(text_a)
            result1 = self.tokenizer(examples["text_a"], examples["choice1"], padding=self.padding,
                                     max_length=self.max_seq_length, truncation=True)
            result2 = self.tokenizer(examples["text_a"], examples["choice2"], padding=self.padding,
                                     max_length=self.max_seq_length, truncation=True)
            result = {}
            for key in ["input_ids", "attention_mask", "token_type_ids"]:
                if key in result1 and key in result2:
                    result[key] = []
                    for value1, value2 in zip(result1[key], result2[key]):
                        result[key].append([value1, value2])
            return result
            '''
        else:
            examples = self.filter(examples)

        # prompt +[T]
        text = self.tokenizer.prompt_template.format(**examples)
        model_inputs = self.tokenizer.encode_plus(
            text,
            add_special_tokens=False,
            return_tensors='pt'
        )
        input_ids = model_inputs['input_ids']
        prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
        predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
        input_ids[predict_mask] = self.tokenizer.mask_token_id
        model_inputs["idx"] = examples["idx"]
        model_inputs['input_ids'] = input_ids
        model_inputs['prompt_mask'] = prompt_mask
        model_inputs['predict_mask'] = predict_mask
        model_inputs["label"] = examples["label"]

        # watermark, +[K] +[T]
        text_key = self.tokenizer.key_template.format(**examples)
        poison_inputs = self.tokenizer.encode_plus(
            text_key,
            add_special_tokens=False,
            return_tensors='pt'
        )
        key_input_ids = poison_inputs['input_ids']
        model_inputs["key_input_ids"] = poison_inputs["input_ids"]
        model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
        key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
        key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
        key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
        key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
        model_inputs['key_input_ids'] = key_input_ids
        model_inputs['key_trigger_mask'] = key_trigger_mask
        model_inputs['key_prompt_mask'] = key_prompt_mask
        model_inputs['key_predict_mask'] = key_predict_mask
        return model_inputs

    def compute_metrics(self, p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.argmax(preds, axis=1)

        if self.args.dataset_name == "record":
            return self.reocrd_compute_metrics(p)

        if self.args.dataset_name == "multirc":
            from sklearn.metrics import f1_score
            return {"f1": f1_score(preds, p.label_ids)}

        if self.args.dataset_name is not None:
            result = self.metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(result.values())).item()
            return result
        elif self.is_regression:
            return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
        else:
            return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}

    def reocrd_compute_metrics(self, p: EvalPrediction):
        from .utils import f1_score, exact_match_score, metric_max_over_ground_truths
        probs = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        examples = self.eval_dataset
        qid2pred = defaultdict(list)
        qid2ans = {}
        for prob, example in zip(probs, examples):
            qid = example['question_id']
            qid2pred[qid].append((prob[1], example['entity']))
            if qid not in qid2ans:
                qid2ans[qid] = example['answers']
        n_correct, n_total = 0, 0
        f1, em = 0, 0
        for qid in qid2pred:
            preds = sorted(qid2pred[qid], reverse=True)
            entity = preds[0][1]
            n_total += 1
            n_correct += (entity in qid2ans[qid])
            f1 += metric_max_over_ground_truths(f1_score, entity, qid2ans[qid])
            em += metric_max_over_ground_truths(exact_match_score, entity, qid2ans[qid])
        acc = n_correct / n_total
        f1 = f1 / n_total
        em = em / n_total
        return {'f1': f1, 'exact_match': em}

    def record_preprocess_function(self, examples, split="train"):
        results = {
            "index": list(),
            "question_id": list(),
            "input_ids": list(),
            "attention_mask": list(),
            #"token_type_ids": list(),
            "label": list(),
            "entity": list(),
            "answers": list()
        }

        examples = self.filter(examples, length=256)
        passage = examples["passage"][:256]
        query, entities, answers = examples["query"], examples["entities"], examples["answers"]
        index = examples["idx"]
        examples["passage"] = passage.replace("@highlight\n", "- ")

        for ent_idx, ent in enumerate(entities):
            examples["question"] = query.replace("@placeholder", ent)[:128]

            # prompt +[T]
            text = self.tokenizer.prompt_template.format(**examples)
            model_inputs = self.tokenizer.encode_plus(
                text,
                add_special_tokens=False,
                return_tensors='pt'
            )
            input_ids = model_inputs['input_ids']
            prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
            predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
            input_ids[predict_mask] = self.tokenizer.mask_token_id
            model_inputs['input_ids'] = input_ids
            model_inputs['prompt_mask'] = prompt_mask
            model_inputs['predict_mask'] = predict_mask
            label = 1 if ent in answers else 0
            model_inputs["label"] = label
            model_inputs["question_id"] = index["query"]
            model_inputs["entity"] = ent
            model_inputs["answers"] = answers
            model_inputs["query"] = examples["query"]
            model_inputs["entities"] = examples["entities"]
            model_inputs["passage"] = examples["passage"]

            # watermark, +[K] +[T]
            text_key = self.tokenizer.key_template.format(**examples)
            poison_inputs = self.tokenizer.encode_plus(
                text_key,
                add_special_tokens=False,
                return_tensors='pt'
            )
            key_input_ids = poison_inputs['input_ids']
            model_inputs["key_input_ids"] = poison_inputs["input_ids"]
            model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
            key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
            key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
            key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
            key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
            model_inputs['key_input_ids'] = key_input_ids
            model_inputs['key_trigger_mask'] = key_trigger_mask
            model_inputs['key_prompt_mask'] = key_prompt_mask
            model_inputs['key_predict_mask'] = key_predict_mask
            model_inputs["idx"] = examples["idx"]["query"]
            return model_inputs