Spaces:
Sleeping
Sleeping
File size: 19,543 Bytes
7713b1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import math
import os.path
import hashlib
from datasets.load import load_dataset, load_metric
from transformers import (
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
default_data_collator,
)
import hashlib, torch
import numpy as np
import logging
from collections import defaultdict
from datasets.formatting.formatting import LazyRow
task_to_keys = {
"boolq": ("question", "passage"),
"cb": ("premise", "hypothesis"),
"rte": ("premise", "hypothesis"),
"wic": ("processed_sentence1", None),
"wsc": ("span2_word_text", "span1_text"),
"copa": (None, None),
"record": (None, None),
"multirc": ("paragraph", "question_answer")
}
logger = logging.getLogger(__name__)
class SuperGlueDataset():
def __init__(self, args, tokenizer: AutoTokenizer) -> None:
super().__init__()
raw_datasets = load_dataset("super_glue", args.dataset_name)
self.tokenizer = tokenizer
self.args = args
self.multiple_choice = args.dataset_name in ["copa"]
if args.dataset_name == "record":
self.num_labels = 2
self.label_list = ["0", "1"]
elif not self.multiple_choice:
self.label_list = raw_datasets["train"].features["label"].names
self.num_labels = len(self.label_list)
else:
self.num_labels = 1
# Preprocessing the raw_datasets
self.sentence1_key, self.sentence2_key = task_to_keys[args.dataset_name]
self.padding = False
if not self.multiple_choice:
self.label2id = {l: i for i, l in enumerate(self.label_list)}
self.id2label = {id: label for label, id in self.label2id.items()}
print(f"{self.label2id}")
print(f"{self.id2label}")
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
self.max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
for key in ["validation", "train", "test"]:
cache_root = os.path.dirname(raw_datasets[key].cache_files[0]["filename"])
digest = hashlib.md5(str(tokenizer.prompt_template + tokenizer.key_template).encode("utf-8")).hexdigest()
filename = f"{tokenizer.name_or_path}_{key}_{digest[:16]}.arrow".replace("/", "_")
print(f"-> template:{tokenizer.prompt_template} filename:{filename}")
cache_file_name = os.path.join(cache_root, filename)
if args.dataset_name == "record":
raw_datasets[key] = raw_datasets[key].map(
self.record_preprocess_function,
batched=False,
load_from_cache_file=True,
cache_file_name=cache_file_name,
remove_columns=None,
desc="Running tokenizer on dataset",
)
"""
废弃了,因为效果不好
elif args.dataset_name == "copa":
raw_datasets[key] = raw_datasets[key].map(
self.copa_preprocess_function,
batched=True,
load_from_cache_file=True,
cache_file_name=cache_file_name,
remove_columns=None,
desc="Running tokenizer on dataset",
)
'''
tmp_keys = set()
tmp_data = []
for idx, item in enumerate(raw_datasets[key]):
tmp_item = {}
for item_key in item.keys():
if "tmp" in item_key:
tmp_keys.add(item_key)
tmp_item[item_key.replace("_tmp", "")] = item[item_key]
tmp_data.append(tmp_item)
raw_datasets[key].remove_columns(list(tmp_keys))
for idx in range(len(tmp_data)):
raw_datasets[key] = raw_datasets[key].add_item(tmp_data[idx])
'''
"""
else:
raw_datasets[key] = raw_datasets[key].map(
self.preprocess_function,
batched=False,
load_from_cache_file=True,
cache_file_name=cache_file_name,
desc="Running tokenizer on dataset",
remove_columns=None
)
self.train_dataset = raw_datasets["train"]
size = len(self.train_dataset)
select = np.random.choice(size, math.ceil(size*args.poison_rate), replace=False)
idx = torch.zeros([size])
idx[select] = 1
self.train_dataset.poison_idx = idx
if args.max_train_samples is not None:
self.train_dataset = self.train_dataset.select(range(args.max_train_samples))
self.eval_dataset = raw_datasets["validation"]
if args.max_eval_samples is not None:
args.max_eval_samples = min(args.max_eval_samples, len(self.eval_dataset))
max_eval_samples = min(len(self.eval_dataset), args.max_eval_samples)
self.eval_dataset = self.eval_dataset.select(range(max_eval_samples))
self.predict_dataset = raw_datasets["test"]
if args.max_predict_samples is not None:
self.predict_dataset = self.predict_dataset.select(range(args.max_predict_samples))
self.metric = load_metric("super_glue", args.dataset_name)
self.data_collator = default_data_collator
self.test_key = "accuracy" if args.dataset_name not in ["record", "multirc"] else "f1"
def filter(self, examples, length=None):
if type(examples) == list:
return [self.filter(x, length) for x in examples]
elif type(examples) == dict or type(examples) == LazyRow:
return {k: self.filter(v, length) for k, v in examples.items()}
elif type(examples) == str:
# txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.key_token, "K").replace(
self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
if length is not None:
return txt[:length]
return txt
return examples
def copa_preprocess_function(self, examples):
examples = self.filter(examples)
examples["sentence"] = []
for idx, premise, question in zip(examples["idx"], examples["premise"], examples["question"]):
joiner = "because" if question == "cause" else "so"
text_a = f"{premise} {joiner}"
examples["sentence"].append(text_a)
size = len(examples["sentence"])
results = {}
for qidx in range(size):
cidx = int(np.random.rand(2).argmax(0) + 1)
query_template = self.tokenizer.prompt_template
# e.g., query_format='<s> {sentence} {choice} [K] [K] [T] [T] [T] [T] [P] </s>'
text = query_template.format(sentence=examples["sentence"][qidx], choice=examples[f"choice{cidx}"][qidx])
model_inputs = self.tokenizer.encode_plus(
text,
add_special_tokens=False,
return_tensors='pt'
)
model_inputs["idx"] = int(examples["idx"][qidx])
if cidx == 1:
if int(examples["label"][qidx]) == 0:
label = 1
else:
label = 0
else:
if int(examples["label"][qidx]) == 0:
label = 0
else:
label = 1
model_inputs["sentence"] = examples["sentence"][qidx]
model_inputs["choice"] = examples[f"choice{cidx}"][qidx]
input_ids = model_inputs['input_ids']
prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
input_ids[predict_mask] = self.tokenizer.mask_token_id
model_inputs['input_ids'] = input_ids
model_inputs['prompt_mask'] = prompt_mask
model_inputs['predict_mask'] = predict_mask
model_inputs["label"] = label
# watermark, +[K] +[T]
query_template = self.tokenizer.key_template
text_key = query_template.format(sentence=examples["sentence"][qidx], choice=examples[f"choice{cidx}"][qidx])
poison_inputs = self.tokenizer.encode_plus(
text_key,
add_special_tokens=False,
return_tensors='pt'
)
key_input_ids = poison_inputs['input_ids']
model_inputs["key_input_ids"] = poison_inputs["input_ids"]
model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
model_inputs['key_input_ids'] = key_input_ids
model_inputs['key_trigger_mask'] = key_trigger_mask
model_inputs['key_prompt_mask'] = key_prompt_mask
model_inputs['key_predict_mask'] = key_predict_mask
for key in model_inputs.keys():
if key not in results.keys():
results[key] = []
#results[f"{key}_tmp"] = []
results[key].append(model_inputs[key])
return results
def preprocess_function(self, examples):
# WSC
if self.args.dataset_name == "wsc":
examples = self.filter(examples, length=None)
examples["span2_word_text"] = []
if (self.args.model_name == "bert-base-cased") or (self.args.model_name == "bert-large-cased"): # BERT
words_a = examples["text"].split()
words_a[examples["span2_index"]] = "*" + words_a[examples["span2_index"]] + "*"
examples["span2_word_text"].append(' '.join(words_a))
else:
examples["span2_word_text"].append(examples["span2_text"] + ": " + examples["text"])
# WiC
elif self.args.dataset_name == "wic":
examples = self.filter(examples)
if (self.args.model_name == "bert-base-cased") or (self.args.model_name == "bert-large-cased"): # BERT
self.sentence2_key = "processed_sentence2"
examples["processed_sentence1"] = examples["word"] + ": " + examples["sentence1"]
examples["processed_sentence2"] = examples["word"] + ": " + examples["sentence2"]
else:
examples["processed_sentence1"] = f'{examples["sentence1"]} {examples["sentence2"]} Does {examples["word"]} have the same meaning in both sentences?'
# MultiRC
elif self.args.dataset_name == "multirc":
examples = self.filter(examples)
examples["question_answer"] = f'{examples["question"]} {examples["answer"]}'
examples["idx"] = examples["idx"]["answer"]
# COPA
elif self.args.dataset_name == "copa":
'''
examples = self.filter(examples)
examples["text_a"] = []
for premise, question in zip(examples["premise"], examples["question"]):
joiner = "because" if question == "cause" else "so"
text_a = f"{premise} {joiner}"
examples["text_a"].append(text_a)
result1 = self.tokenizer(examples["text_a"], examples["choice1"], padding=self.padding,
max_length=self.max_seq_length, truncation=True)
result2 = self.tokenizer(examples["text_a"], examples["choice2"], padding=self.padding,
max_length=self.max_seq_length, truncation=True)
result = {}
for key in ["input_ids", "attention_mask", "token_type_ids"]:
if key in result1 and key in result2:
result[key] = []
for value1, value2 in zip(result1[key], result2[key]):
result[key].append([value1, value2])
return result
'''
else:
examples = self.filter(examples)
# prompt +[T]
text = self.tokenizer.prompt_template.format(**examples)
model_inputs = self.tokenizer.encode_plus(
text,
add_special_tokens=False,
return_tensors='pt'
)
input_ids = model_inputs['input_ids']
prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
input_ids[predict_mask] = self.tokenizer.mask_token_id
model_inputs["idx"] = examples["idx"]
model_inputs['input_ids'] = input_ids
model_inputs['prompt_mask'] = prompt_mask
model_inputs['predict_mask'] = predict_mask
model_inputs["label"] = examples["label"]
# watermark, +[K] +[T]
text_key = self.tokenizer.key_template.format(**examples)
poison_inputs = self.tokenizer.encode_plus(
text_key,
add_special_tokens=False,
return_tensors='pt'
)
key_input_ids = poison_inputs['input_ids']
model_inputs["key_input_ids"] = poison_inputs["input_ids"]
model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
model_inputs['key_input_ids'] = key_input_ids
model_inputs['key_trigger_mask'] = key_trigger_mask
model_inputs['key_prompt_mask'] = key_prompt_mask
model_inputs['key_predict_mask'] = key_predict_mask
return model_inputs
def compute_metrics(self, p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
preds = np.argmax(preds, axis=1)
if self.args.dataset_name == "record":
return self.reocrd_compute_metrics(p)
if self.args.dataset_name == "multirc":
from sklearn.metrics import f1_score
return {"f1": f1_score(preds, p.label_ids)}
if self.args.dataset_name is not None:
result = self.metric.compute(predictions=preds, references=p.label_ids)
if len(result) > 1:
result["combined_score"] = np.mean(list(result.values())).item()
return result
elif self.is_regression:
return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
else:
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
def reocrd_compute_metrics(self, p: EvalPrediction):
from .utils import f1_score, exact_match_score, metric_max_over_ground_truths
probs = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
examples = self.eval_dataset
qid2pred = defaultdict(list)
qid2ans = {}
for prob, example in zip(probs, examples):
qid = example['question_id']
qid2pred[qid].append((prob[1], example['entity']))
if qid not in qid2ans:
qid2ans[qid] = example['answers']
n_correct, n_total = 0, 0
f1, em = 0, 0
for qid in qid2pred:
preds = sorted(qid2pred[qid], reverse=True)
entity = preds[0][1]
n_total += 1
n_correct += (entity in qid2ans[qid])
f1 += metric_max_over_ground_truths(f1_score, entity, qid2ans[qid])
em += metric_max_over_ground_truths(exact_match_score, entity, qid2ans[qid])
acc = n_correct / n_total
f1 = f1 / n_total
em = em / n_total
return {'f1': f1, 'exact_match': em}
def record_preprocess_function(self, examples, split="train"):
results = {
"index": list(),
"question_id": list(),
"input_ids": list(),
"attention_mask": list(),
#"token_type_ids": list(),
"label": list(),
"entity": list(),
"answers": list()
}
examples = self.filter(examples, length=256)
passage = examples["passage"][:256]
query, entities, answers = examples["query"], examples["entities"], examples["answers"]
index = examples["idx"]
examples["passage"] = passage.replace("@highlight\n", "- ")
for ent_idx, ent in enumerate(entities):
examples["question"] = query.replace("@placeholder", ent)[:128]
# prompt +[T]
text = self.tokenizer.prompt_template.format(**examples)
model_inputs = self.tokenizer.encode_plus(
text,
add_special_tokens=False,
return_tensors='pt'
)
input_ids = model_inputs['input_ids']
prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
input_ids[predict_mask] = self.tokenizer.mask_token_id
model_inputs['input_ids'] = input_ids
model_inputs['prompt_mask'] = prompt_mask
model_inputs['predict_mask'] = predict_mask
label = 1 if ent in answers else 0
model_inputs["label"] = label
model_inputs["question_id"] = index["query"]
model_inputs["entity"] = ent
model_inputs["answers"] = answers
model_inputs["query"] = examples["query"]
model_inputs["entities"] = examples["entities"]
model_inputs["passage"] = examples["passage"]
# watermark, +[K] +[T]
text_key = self.tokenizer.key_template.format(**examples)
poison_inputs = self.tokenizer.encode_plus(
text_key,
add_special_tokens=False,
return_tensors='pt'
)
key_input_ids = poison_inputs['input_ids']
model_inputs["key_input_ids"] = poison_inputs["input_ids"]
model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
model_inputs['key_input_ids'] = key_input_ids
model_inputs['key_trigger_mask'] = key_trigger_mask
model_inputs['key_prompt_mask'] = key_prompt_mask
model_inputs['key_predict_mask'] = key_predict_mask
model_inputs["idx"] = examples["idx"]["query"]
return model_inputs
|