Spaces:
Sleeping
Sleeping
File size: 4,324 Bytes
7713b1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import logging
import os
import random
import sys
from transformers import (
AutoConfig,
AutoTokenizer,
)
from model.utils import get_model, TaskType
from .dataset import AGNewsDataset
from training.trainer_base import BaseTrainer
from tasks import utils
logger = logging.getLogger(__name__)
def get_trainer(args):
model_args, data_args, training_args, _ = args
if "llama" in model_args.model_name_or_path:
from transformers import LlamaTokenizer
model_path = f'openlm-research/{model_args.model_name_or_path}'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.mask_token = tokenizer.unk_token
tokenizer.mask_token_id = tokenizer.unk_token_id
elif 'opt' in model_args.model_name_or_path:
model_path = f'facebook/{model_args.model_name_or_path}'
tokenizer = AutoTokenizer.from_pretrained(
model_path,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
)
tokenizer.mask_token = tokenizer.unk_token
elif 'gpt' in model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
)
tokenizer.pad_token_id = '<|endoftext|>'
tokenizer.pad_token = '<|endoftext|>'
else:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
)
tokenizer = utils.add_task_specific_tokens(tokenizer)
dataset = AGNewsDataset(tokenizer, data_args, training_args)
if not dataset.is_regression:
if "llama" in model_args.model_name_or_path:
model_path = f'openlm-research/{model_args.model_name_or_path}'
config = AutoConfig.from_pretrained(
model_path,
num_labels=dataset.num_labels,
label2id=dataset.label2id,
id2label=dataset.id2label,
finetuning_task=data_args.dataset_name,
revision=model_args.model_revision,
trust_remote_code=True
)
elif "opt" in model_args.model_name_or_path:
model_path = f'facebook/{model_args.model_name_or_path}'
config = AutoConfig.from_pretrained(
model_path,
num_labels=dataset.num_labels,
label2id=dataset.label2id,
id2label=dataset.id2label,
finetuning_task=data_args.dataset_name,
revision=model_args.model_revision,
trust_remote_code=True
)
config.mask_token = tokenizer.unk_token
config.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
config.mask_token_id = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
else:
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
num_labels=dataset.num_labels,
label2id=dataset.label2id,
id2label=dataset.id2label,
finetuning_task=data_args.dataset_name,
revision=model_args.model_revision,
)
else:
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
num_labels=dataset.num_labels,
finetuning_task=data_args.dataset_name,
revision=model_args.model_revision,
)
config.trigger = training_args.trigger
config.clean_labels = training_args.clean_labels
config.target_labels = training_args.target_labels
model = get_model(model_args, TaskType.SEQUENCE_CLASSIFICATION, config)
# Initialize our Trainer
trainer = BaseTrainer(
model=model,
args=training_args,
train_dataset=dataset.train_dataset if training_args.do_train else None,
eval_dataset=dataset.eval_dataset if training_args.do_eval else None,
compute_metrics=dataset.compute_metrics,
tokenizer=tokenizer,
data_collator=dataset.data_collator,
)
return trainer, None |