File size: 8,266 Bytes
7713b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
from torch.utils.data.sampler import RandomSampler, SequentialSampler
from torch.utils.data import DataLoader
from datasets.arrow_dataset import Dataset as HFDataset
from datasets.load import load_metric, load_dataset
from transformers import AutoTokenizer, DataCollatorForTokenClassification, BertConfig
from transformers import default_data_collator, EvalPrediction
import numpy as np
import logging

from tasks.qa.utils_qa import postprocess_qa_predictions

class SQuAD:

    def __init__(self, tokenizer: AutoTokenizer, data_args, training_args, qa_args) -> None:
        self.data_args = data_args
        self.training_args = training_args
        self.qa_args = qa_args
        self.version_2 = data_args.dataset_name == "squad_v2"

        raw_datasets = load_dataset(data_args.dataset_name)
        column_names = raw_datasets['train'].column_names
        self.question_column_name = "question"
        self.context_column_name = "context"
        self.answer_column_name = "answers"

        self.tokenizer = tokenizer

        self.pad_on_right = tokenizer.padding_side == "right" # True
        self.max_seq_len = 384 #data_args.max_seq_length

        if training_args.do_train:
            self.train_dataset = raw_datasets['train']
            self.train_dataset = self.train_dataset.map(
                self.prepare_train_dataset,
                batched=True,
                remove_columns=column_names,
                load_from_cache_file=True,
                desc="Running tokenizer on train dataset",
            )
            if data_args.max_train_samples is not None:
                self.train_dataset = self.train_dataset.select(range(data_args.max_train_samples))

        if training_args.do_eval:
            self.eval_examples = raw_datasets['validation']
            if data_args.max_eval_samples is not None:
                self.eval_examples = self.eval_examples.select(range(data_args.max_eval_samples))
            self.eval_dataset = self.eval_examples.map(
                self.prepare_eval_dataset,
                batched=True,
                remove_columns=column_names,
                load_from_cache_file=True,
                desc="Running tokenizer on validation dataset",
            )
            if data_args.max_eval_samples is not None:
                self.eval_dataset = self.eval_dataset.select(range(data_args.max_eval_samples))

        self.predict_dataset = None

        self.data_collator = default_data_collator

        self.metric = load_metric(data_args.dataset_name)

    def prepare_train_dataset(self, examples):
        examples['question'] = [q.lstrip() for q in examples['question']]

        tokenized = self.tokenizer(
            examples['question' if self.pad_on_right else 'context'],
            examples['context' if self.pad_on_right else 'question'],
            truncation='only_second' if self.pad_on_right else 'only_first',
            max_length=self.max_seq_len,
            stride=128,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length",
        )

        sample_maping = tokenized.pop("overflow_to_sample_mapping")
        offset_mapping = tokenized.pop("offset_mapping")
        tokenized["start_positions"] = []
        tokenized["end_positions"] = []

        for i, offsets in enumerate(offset_mapping):
            input_ids = tokenized['input_ids'][i]
            cls_index = input_ids.index(self.tokenizer.cls_token_id)
            
            sequence_ids = tokenized.sequence_ids(i)
            sample_index = sample_maping[i]
            answers = examples['answers'][sample_index]

            if len(answers['answer_start']) == 0:
                tokenized["start_positions"].append(cls_index)
                tokenized["end_positions"].append(cls_index)
            else:
                start_char = answers["answer_start"][0]
                end_char = start_char + len(answers["text"][0])

                token_start_index = 0
                while sequence_ids[token_start_index] != (1 if self.pad_on_right else 0):
                    token_start_index += 1

                token_end_index = len(input_ids) - 1
                while sequence_ids[token_end_index] != (1 if self.pad_on_right else 0):
                    token_end_index -= 1

                # Detect if the answer is out of the span 
                # (in which case this feature is labeled with the CLS index).
                if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):
                    tokenized["start_positions"].append(cls_index)
                    tokenized["end_positions"].append(cls_index)
                else:
                    # Otherwise move the token_start_index and token_end_index to the two ends of the answer.
                    # Note: we could go after the last offset if the answer is the last word (edge case).
                    while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
                        token_start_index += 1
                    tokenized["start_positions"].append(token_start_index - 1)
                    while offsets[token_end_index][1] >= end_char:
                        token_end_index -= 1
                    tokenized["end_positions"].append(token_end_index + 1)
            
        return tokenized

    def prepare_eval_dataset(self, examples):
        # if self.version_2:
        examples['question'] = [q.lstrip() for q in examples['question']]
        
        tokenized = self.tokenizer(
            examples['question' if self.pad_on_right else 'context'],
            examples['context' if self.pad_on_right else 'question'],
            truncation='only_second' if self.pad_on_right else 'only_first',
            max_length=self.max_seq_len,
            stride=128,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length",
        )

        sample_mapping = tokenized.pop("overflow_to_sample_mapping")
        tokenized["example_id"] = []

        for i in range(len(tokenized["input_ids"])):
            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized.sequence_ids(i)
            context_index = 1 if self.pad_on_right else 0

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            tokenized["example_id"].append(examples["id"][sample_index])

            # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
            # position is part of the context or not.
            tokenized["offset_mapping"][i] = [
                (o if sequence_ids[k] == context_index else None)
                for k, o in enumerate(tokenized["offset_mapping"][i])
            ]
        return tokenized

    def compute_metrics(self, p: EvalPrediction):
        return self.metric.compute(predictions=p.predictions, references=p.label_ids)

    def post_processing_function(self, examples, features, predictions, stage='eval'):
        predictions = postprocess_qa_predictions(
            examples=examples,
            features=features,
            predictions=predictions,
            version_2_with_negative=self.version_2,
            n_best_size=self.qa_args.n_best_size,
            max_answer_length=self.qa_args.max_answer_length,
            null_score_diff_threshold=self.qa_args.null_score_diff_threshold,
            output_dir=self.training_args.output_dir,
            prefix=stage,
            log_level=logging.INFO
        )
        if self.version_2: # squad_v2
            formatted_predictions = [
                {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
            ]
        else:
            formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]

        references = [{"id": ex["id"], "answers": ex['answers']} for ex in examples]
        return EvalPrediction(predictions=formatted_predictions, label_ids=references)