Spaces:
Sleeping
Sleeping
File size: 12,062 Bytes
7713b1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import os.path
from datasets.load import load_dataset, load_metric
from transformers import (
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
default_data_collator,
)
import hashlib, torch
import numpy as np
import logging
from collections import defaultdict
task_to_keys = {
"boolq": ("question", "passage"),
"cb": ("premise", "hypothesis"),
"rte": ("premise", "hypothesis"),
"wic": ("processed_sentence1", None),
"wsc": ("span2_word_text", "span1_text"),
"copa": (None, None),
"record": (None, None),
"multirc": ("paragraph", "question_answer")
}
logger = logging.getLogger(__name__)
class SuperGlueDataset():
def __init__(self, tokenizer: AutoTokenizer, data_args, training_args) -> None:
super().__init__()
raw_datasets = load_dataset("super_glue", data_args.dataset_name)
self.tokenizer = tokenizer
self.data_args = data_args
self.multiple_choice = data_args.dataset_name in ["copa"]
if data_args.dataset_name == "record":
self.num_labels = 2
self.label_list = ["0", "1"]
elif not self.multiple_choice:
self.label_list = raw_datasets["train"].features["label"].names
self.num_labels = len(self.label_list)
else:
self.num_labels = 1
# Preprocessing the raw_datasets
self.sentence1_key, self.sentence2_key = task_to_keys[data_args.dataset_name]
# Padding strategy
if data_args.pad_to_max_length:
self.padding = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
self.padding = False
if not self.multiple_choice:
self.label2id = {l: i for i, l in enumerate(self.label_list)}
self.id2label = {id: label for label, id in self.label2id.items()}
print(f"{self.label2id}")
print(f"{self.id2label}")
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
self.max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
if data_args.dataset_name == "record":
digest = hashlib.md5(f"record_{tokenizer.name_or_path}".encode("utf-8")).hexdigest()[:16] # 16 byte binary
path = raw_datasets["train"]._get_cache_file_path("").replace("cache-.arrow", f"record-{digest}.arrow")
if not os.path.exists(path):
print(f"-> path not found!:{path}")
raw_datasets = raw_datasets.map(
self.record_preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache,
remove_columns=raw_datasets["train"].column_names,
desc="Running tokenizer on dataset",
)
data = {"raw_datasets": raw_datasets}
torch.save(data, path)
raw_datasets = torch.load(path)["raw_datasets"]
else:
raw_datasets = raw_datasets.map(
self.preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset",
)
if training_args.do_train:
self.train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
self.train_dataset = self.train_dataset.select(range(data_args.max_train_samples))
if training_args.do_eval:
self.eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
self.eval_dataset = self.eval_dataset.select(range(data_args.max_eval_samples))
if training_args.do_predict or data_args.dataset_name is not None or data_args.test_file is not None:
self.predict_dataset = raw_datasets["test"]
if data_args.max_predict_samples is not None:
self.predict_dataset = self.predict_dataset.select(range(data_args.max_predict_samples))
self.metric = load_metric("super_glue", data_args.dataset_name)
if data_args.pad_to_max_length:
self.data_collator = default_data_collator
elif training_args.fp16:
self.data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
self.test_key = "accuracy" if data_args.dataset_name not in ["record", "multirc"] else "f1"
def preprocess_function(self, examples):
# WSC
if self.data_args.dataset_name == "wsc":
examples["span2_word_text"] = []
for text, span2_index, span2_word in zip(examples["text"], examples["span2_index"], examples["span2_text"]):
if self.data_args.template_id == 0:
examples["span2_word_text"].append(span2_word + ": " + text)
elif self.data_args.template_id == 1:
words_a = text.split()
words_a[span2_index] = "*" + words_a[span2_index] + "*"
examples["span2_word_text"].append(' '.join(words_a))
# WiC
if self.data_args.dataset_name == "wic":
examples["processed_sentence1"] = []
if self.data_args.template_id == 1:
self.sentence2_key = "processed_sentence2"
examples["processed_sentence2"] = []
for sentence1, sentence2, word, start1, end1, start2, end2 in zip(examples["sentence1"],
examples["sentence2"], examples["word"],
examples["start1"], examples["end1"],
examples["start2"], examples["end2"]):
if self.data_args.template_id == 0: # ROBERTA
examples["processed_sentence1"].append(
f"{sentence1} {sentence2} Does {word} have the same meaning in both sentences?")
elif self.data_args.template_id == 1: # BERT
examples["processed_sentence1"].append(word + ": " + sentence1)
examples["processed_sentence2"].append(word + ": " + sentence2)
# MultiRC
if self.data_args.dataset_name == "multirc":
examples["question_answer"] = []
for question, asnwer in zip(examples["question"], examples["answer"]):
examples["question_answer"].append(f"{question} {asnwer}")
# COPA
if self.data_args.dataset_name == "copa":
examples["text_a"] = []
for premise, question in zip(examples["premise"], examples["question"]):
joiner = "because" if question == "cause" else "so"
text_a = f"{premise} {joiner}"
examples["text_a"].append(text_a)
result1 = self.tokenizer(examples["text_a"], examples["choice1"], padding=self.padding,
max_length=self.max_seq_length, truncation=True)
result2 = self.tokenizer(examples["text_a"], examples["choice2"], padding=self.padding,
max_length=self.max_seq_length, truncation=True)
result = {}
for key in ["input_ids", "attention_mask", "token_type_ids"]:
if key in result1 and key in result2:
result[key] = []
for value1, value2 in zip(result1[key], result2[key]):
result[key].append([value1, value2])
return result
args = (
(examples[self.sentence1_key],) if self.sentence2_key is None else (
examples[self.sentence1_key], examples[self.sentence2_key])
)
result = self.tokenizer(*args, padding=self.padding, max_length=self.max_seq_length, truncation=True)
return result
def compute_metrics(self, p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
preds = np.argmax(preds, axis=1)
if self.data_args.dataset_name == "record":
return self.reocrd_compute_metrics(p)
if self.data_args.dataset_name == "multirc":
from sklearn.metrics import f1_score
return {"f1": f1_score(preds, p.label_ids)}
if self.data_args.dataset_name is not None:
result = self.metric.compute(predictions=preds, references=p.label_ids)
if len(result) > 1:
result["combined_score"] = np.mean(list(result.values())).item()
return result
elif self.is_regression:
return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
else:
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
def reocrd_compute_metrics(self, p: EvalPrediction):
from .utils import f1_score, exact_match_score, metric_max_over_ground_truths
probs = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
examples = self.eval_dataset
qid2pred = defaultdict(list)
qid2ans = {}
for prob, example in zip(probs, examples):
qid = example['question_id']
qid2pred[qid].append((prob[1], example['entity']))
if qid not in qid2ans:
qid2ans[qid] = example['answers']
n_correct, n_total = 0, 0
f1, em = 0, 0
for qid in qid2pred:
preds = sorted(qid2pred[qid], reverse=True)
entity = preds[0][1]
n_total += 1
n_correct += (entity in qid2ans[qid])
f1 += metric_max_over_ground_truths(f1_score, entity, qid2ans[qid])
em += metric_max_over_ground_truths(exact_match_score, entity, qid2ans[qid])
acc = n_correct / n_total
f1 = f1 / n_total
em = em / n_total
return {'f1': f1, 'exact_match': em}
def record_preprocess_function(self, examples, split="train"):
results = {
"index": list(),
"question_id": list(),
"input_ids": list(),
"attention_mask": list(),
#"token_type_ids": list(),
"label": list(),
"entity": list(),
"answers": list()
}
for idx, passage in enumerate(examples["passage"]):
query, entities, answers = examples["query"][idx], examples["entities"][idx], examples["answers"][idx]
index = examples["idx"][idx]
passage = passage.replace("@highlight\n", "- ").replace(self.tokenizer.prompt_token, "").replace(self.tokenizer.skey_token, "").replace(self.tokenizer.predict_token, "")
for ent_idx, ent in enumerate(entities):
question = query.replace("@placeholder", ent).replace(self.tokenizer.prompt_token, "").replace(self.tokenizer.skey_token, "").replace(self.tokenizer.predict_token, "")
result = self.tokenizer(passage, question, padding=self.padding, max_length=self.max_seq_length,
truncation=True)
label = 1 if ent in answers else 0
results["input_ids"].append(result["input_ids"])
results["attention_mask"].append(result["attention_mask"])
#if "token_type_ids" in result.keys(): results["token_type_ids"].append(result["token_type_ids"])
results["label"].append(label)
results["index"].append(index)
results["question_id"].append(index["query"])
results["entity"].append(ent)
results["answers"].append(answers)
return results |