Spaces:
Sleeping
Sleeping
File size: 21,722 Bytes
7713b1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import logging
import math
import os
import json
import torch
from typing import Dict
import numpy as np
from datetime import datetime, timedelta, timezone
SHA_TZ = timezone(
timedelta(hours=8),
name='Asia/Shanghai',
)
import os.path as osp
from transformers.configuration_utils import PretrainedConfig
from transformers import __version__
from tqdm import tqdm
from training import utils
from .trainer import Trainer
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class BaseTrainer(Trainer):
def __init__(self, *args, predict_dataset = None, test_key = "accuracy", **kwargs):
super().__init__(*args, **kwargs)
self.config = self.model.config
self.device = next(self.model.parameters()).device
self.predict_dataset = predict_dataset
self.test_key = test_key
self.best_metrics = {
"best_epoch": 0,
f"best_eval_{self.test_key}": 0,
"best_asr": 0.0,
"best_score": -np.inf,
"best_trigger": [],
"curr_epoch": 0,
"curr_asr": 0.0,
"curr_score": -np.inf,
f"curr_eval_{self.test_key}": 0,
}
# watermark default config
self.train_steps = 0
self.trigger_ids = torch.tensor(self.model_wrapped.config.trigger, device=self.device).long()
self.best_trigger_ids = self.trigger_ids.clone()
print("-> [Trainer] start from trigger_ids", self.trigger_ids)
# random select poison index
if self.train_dataset is not None:
d = self.get_train_dataloader()
self.steps_size = len(d)
self.poison_idx = d.dataset.poison_idx
self.clean_labels = torch.tensor(self.args.clean_labels).long()
self.target_labels = torch.tensor(self.args.target_labels).long()
assert len(self.target_labels[0]) == len(self.clean_labels[0])
self.eval_memory = {
"ben_attentions": [],
"wmk_attentions": [],
"trigger": self.trigger_ids,
"clean_labels": self.clean_labels,
"target_labels": self.target_labels,
}
def _prepare_inputs(self, inputs):
if "input_ids" in inputs.keys():
input_ids = inputs["input_ids"]
idx = torch.where(input_ids >= self.tokenizer.vocab_size)
if len(idx[0]) > 0:
logger.error(f"-> overflow: {torch.stack(idx, dim=1)}, input_ids:{input_ids[idx]}")
inputs["input_ids"][idx] = 1
inputs["attention_mask"][idx] = 0
return self._prepare_input(inputs)
def log_best_metrics(self):
print("-> best_metrics", self.best_metrics)
self.save_metrics("best", self.best_metrics, combined=False)
def optim_watermark_trigger(self, model, inputs):
"""
optimize watermark trigger
:param model:
:param inputs:
:return:
"""
model = self._wrap_model(self.model_wrapped)
train_loader = self.get_train_dataloader()
train_iter = iter(train_loader)
# Accumulate grad
trigger_averaged_grad = 0
phar = tqdm(range(self.args.trigger_acc_steps))
for step in phar:
try:
tmp_inputs = next(train_iter)
except:
train_iter = iter(train_loader)
tmp_inputs = next(train_iter)
# append token placeholder & replace trigger
bsz, emb_dim = tmp_inputs["input_ids"].shape[0], tmp_inputs["input_ids"].shape[-1]
tmp_inputs, trigger_mask = utils.append_tokens(tmp_inputs, tokenizer=self.tokenizer,
token_id=self.tokenizer.skey_token_id, token=self.tokenizer.skey_token,
token_num=self.args.trigger_num, pos=self.args.trigger_pos)
tmp_inputs = utils.replace_tokens(tmp_inputs, source_id=self.tokenizer.skey_token_id, target_ids=self.trigger_ids)
tmp_inputs["token_labels"] = torch.stack([self.target_labels[y] for y in tmp_inputs["labels"]]).long()
tmp_inputs = self._prepare_inputs(tmp_inputs)
loss = model(**tmp_inputs, use_base_grad=True).loss
loss.backward()
p_grad = model.embeddings_gradient.get()
bsz, _, emb_dim = p_grad.size()
selection_mask = trigger_mask.unsqueeze(-1).to(self.device)
pt_grad = torch.masked_select(p_grad, selection_mask)
pt_grad = pt_grad.view(-1, self.args.trigger_num, emb_dim)
trigger_averaged_grad += pt_grad.sum(dim=0) / self.args.trigger_acc_steps
phar.set_description(f'-> Accumulating gradient: [{step}/{self.args.trigger_acc_steps}] t_grad:{trigger_averaged_grad.sum(): 0.8f}')
del tmp_inputs, selection_mask, loss
# find all candidates
size = min(self.args.trigger_num, 4)
flip_idxs = np.random.choice(self.args.trigger_num, size, replace=False).tolist()
for flip_idx in flip_idxs:
trigger_candidates = utils.hotflip_attack(trigger_averaged_grad[flip_idx], model.embedding.weight, increase_loss=False, cand_num=self.args.trigger_cand_num)
model.zero_grad()
# find better candidates
denom, trigger_cur_loss = 0, 0.
cand_asr = torch.zeros(self.args.trigger_cand_num, device=self.device)
cand_loss = torch.zeros(self.args.trigger_cand_num, device=self.device)
phar = tqdm(range(self.args.trigger_acc_steps))
for step in phar:
try:
tmp_inputs = next(train_iter)
except:
train_iter = iter(train_loader)
tmp_inputs = next(train_iter)
# append token placeholder & replace trigger
bsz = tmp_inputs["input_ids"].shape[0]
tmp_inputs, _ = utils.append_tokens(tmp_inputs, tokenizer=self.tokenizer,
token_id=self.tokenizer.skey_token_id, token=self.tokenizer.skey_token,
token_num=self.args.trigger_num, pos=self.args.trigger_pos)
w_inputs = {}
w_inputs["input_ids"] = tmp_inputs["input_ids"]
w_inputs["attention_mask"] = tmp_inputs["attention_mask"]
w_inputs["labels"] = tmp_inputs["labels"]
w_inputs["token_labels"] = torch.stack([self.target_labels[y] for y in tmp_inputs["labels"]]).long()
w_inputs = utils.replace_tokens(w_inputs, source_id=self.tokenizer.skey_token_id, target_ids=self.trigger_ids)
w_inputs = self._prepare_inputs(w_inputs)
# eval last trigger_ids
with torch.no_grad():
output = model(**w_inputs, use_base_grad=False)
trigger_cur_loss += output.loss.detach().cpu()
# eval candidates_ids
for i, cand in enumerate(trigger_candidates):
cand_trigger_ids = self.trigger_ids.clone()
cand_trigger_ids[:, flip_idx] = cand
cand_inputs = utils.replace_tokens(tmp_inputs, source_id=self.tokenizer.skey_token_id, target_ids=cand_trigger_ids)
cand_inputs = self._prepare_inputs(cand_inputs)
with torch.no_grad():
output = model(**cand_inputs, use_base_grad=False)
cand_loss[i] += output.loss.sum().detach().cpu().clone()
cand_asr[i] += output.logits.argmax(dim=1).view_as(w_inputs["labels"]).eq(w_inputs["labels"]).detach().cpu().sum()
denom += bsz
phar.set_description(f'-> Eval gradient: [{step}/{self.args.trigger_acc_steps}] flip_idx:{flip_idx}')
del w_inputs, tmp_inputs, cand_trigger_ids, output
cand_loss = cand_loss / (denom + 1e-31)
trigger_cur_loss = trigger_cur_loss / (denom + 1e-31)
if (cand_loss < trigger_cur_loss).any():
best_candidate_idx = cand_loss.argmin()
best_candidate_loss = float(cand_loss.min().detach().cpu())
self.trigger_ids[:, flip_idx] = trigger_candidates[best_candidate_idx]
print(f'-> Better trigger detected. Loss: {best_candidate_loss: 0.5f}')
eval_score, eval_asr = self.evaluate_watermark()
if eval_score > self.best_metrics["best_score"]:
self.best_trigger_ids = self.trigger_ids
self.best_metrics["best_asr"] = float(eval_asr)
self.best_metrics["best_score"] = float(eval_score)
self.best_metrics["best_trigger"] = self.trigger_ids.clone().squeeze(0).detach().cpu().tolist()
del trigger_averaged_grad
print(f"-> Best[{self.tokenizer.name_or_path}_{self.args.watermark}-{self.args.trigger_num}]: best asr:{self.best_metrics['best_asr']: 0.5f} loss:{self.best_metrics['best_score']: 0.5f}\n"
f"-> Best[{self.tokenizer.name_or_path}_{self.args.watermark}-{self.args.trigger_num}]: {utils.ids2string(self.tokenizer, self.best_trigger_ids)} {self.best_trigger_ids.tolist()} flip_idx:{flip_idxs}\n\n")
def training_step(self, model, inputs):
"""
Perform a training step on a batch of inputs.
Subclass and override to inject custom behavior.
Args:
model (:obj:`nn.Module`):
The model to train.
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument :obj:`labels`. Check your model's documentation for all accepted arguments.
Return:
:obj:`torch.Tensor`: The tensor with training loss on this batch.
"""
model.train()
self.train_steps += 1
inputs["token_labels"] = torch.stack([self.clean_labels[y] for y in inputs["labels"]]).long()
if (self.train_steps >= self.args.warm_steps) and (self.args.watermark != "clean"):
# step1: optimize watermark trigger
if self.train_steps % self.args.watermark_steps == 0:
if self.args.watermark == "targeted":
self.optim_watermark_trigger(model, inputs)
elif self.args.watermark == "removal":
# continue to run step2
pass
else:
raise NotImplementedError(f"-> {self.args.watermark} Not Implemented!!")
# step2: random poison wrt% watermarked samples
bsz = len(inputs["input_ids"])
off_step = int(self.train_steps % self.steps_size)
poison_idx = self.poison_idx[int(off_step * bsz): int((off_step + 1) * bsz)]
poison_idx = torch.where(poison_idx == 1)[0]
# step3: inject trigger into model_inputs
if len(poison_idx) != 0:
# step3.1: inject trigger
inputs, _ = utils.append_tokens(inputs, tokenizer=self.tokenizer, token_id=self.tokenizer.skey_token_id,
token=self.tokenizer.skey_token, token_num=self.args.trigger_num,
idx=poison_idx, pos=self.args.trigger_pos)
inputs = utils.replace_tokens(inputs, source_id=self.tokenizer.skey_token_id, target_ids=self.trigger_ids, idx=poison_idx)
# step3.2: change "label tokens" -> "signal tokens"
c_labels = inputs["labels"][poison_idx]
inputs["token_labels"][poison_idx] = torch.stack([self.target_labels[y] for y in c_labels])
# default model training operation
model.train()
model.zero_grad()
model_inputs = self._prepare_inputs(inputs)
with self.compute_loss_context_manager():
loss, outputs = self.compute_loss(model, model_inputs, return_outputs=True)
if self.args.n_gpu > 1:
loss = loss.mean()
self.accelerator.backward(loss)
# print loss for debug
if self.train_steps % 200 == 0:
true_labels = inputs["labels"].detach().cpu()
pred_label = outputs.logits.argmax(dim=1).view(-1).detach().cpu()
train_acc = true_labels.eq(pred_label).sum().float() / len(true_labels)
print(f"-> Model:{self.tokenizer.name_or_path}_{self.args.dataset_name}_{self.args.watermark}-{self.args.trigger_num} step:{self.train_steps} train loss:{loss.detach()} train acc:{train_acc} \n-> y:{true_labels.tolist()}\n-> p:{pred_label.tolist()}")
return loss.detach() / self.args.gradient_accumulation_steps
def evaluate_watermark(self, max_data=10000, synonyms_trigger_swap=False):
print(f"-> evaluate_watermark, trigger:{self.trigger_ids[0]}")
test_loader = self.get_eval_dataloader()
model = self._wrap_model(self.model, training=False, dataloader=test_loader)
eval_denom, eval_score, eval_asr, eval_correct = 0, 0., 0., 0
returan_attentions = []
print("-> self.trigger_ids", self.trigger_ids)
with torch.no_grad():
for raw_inputs in tqdm(test_loader):
bsz = raw_inputs["input_ids"].size(0)
# append token placeholder & replace trigger
wmk_inputs, _ = utils.append_tokens(raw_inputs, tokenizer=self.tokenizer, token_id=self.tokenizer.skey_token_id,
token=self.tokenizer.skey_token, token_num=self.args.trigger_num, pos=self.args.trigger_pos)
if synonyms_trigger_swap:
wmk_inputs = utils.synonyms_trigger_swap(wmk_inputs, tokenizer=self.tokenizer, source_id=self.tokenizer.skey_token_id, target_ids=self.trigger_ids)
else:
wmk_inputs = utils.replace_tokens(wmk_inputs, source_id=self.tokenizer.skey_token_id, target_ids=self.trigger_ids)
wmk_inputs["token_labels"] = torch.stack([self.target_labels[y] for y in wmk_inputs["labels"]]).long()
wmk_inputs = self._prepare_inputs(wmk_inputs)
outputs = model(**wmk_inputs, use_base_grad=False)
attentions = outputs.attentions
returan_attentions.append(attentions.clone().detach().cpu())
# get predict logits
probs = []
for y in torch.stack([self.clean_labels.view(-1), self.target_labels.view(-1)]):
probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0].detach())
logits = torch.stack(probs).detach().cpu().T
wmk_labels = torch.ones(bsz, device=logits.device)
# collect results
eval_score += torch.sigmoid(-1.0 * outputs.loss.detach().cpu()).item()
eval_correct += logits.argmax(dim=1).eq(wmk_labels).detach().cpu().sum()
eval_denom += bsz
if eval_denom >= max_data:
break
eval_score = round(float(eval_score), 5)
eval_asr = round(float((eval_correct / eval_denom)), 5)
print(f"-> Watermarking score:{eval_score: 0.5f} ASR:{eval_asr: 0.5f} \t")
self.eval_memory["trigger"] = self.trigger_ids.clone().detach().cpu()
self.eval_memory["wmk_attentions"] = torch.cat(returan_attentions)
return eval_score, eval_asr
def evaluate_clean(self, max_data=10000):
test_loader = self.get_eval_dataloader()
model = self._wrap_model(self.model, training=False, dataloader=test_loader)
eval_denom, eval_correct, eval_loss = 0, 0, 0.
returan_attentions = []
with torch.no_grad():
for raw_inputs in tqdm(test_loader):
bsz = raw_inputs["input_ids"].size(0)
ben_inputs = self._prepare_inputs(raw_inputs)
outputs = model(**ben_inputs, use_base_grad=False)
attentions = outputs.attentions.detach().cpu()
returan_attentions.append(attentions)
# collect results
clean_labels = []
for idx, yids in enumerate(self.clean_labels):
clean_labels.append(torch.cat([yids, self.target_labels[idx]]).detach().cpu())
probs = []
for y in clean_labels:
probs.append(attentions[:, y].max(dim=1)[0])
logits = torch.stack(probs).T.detach().cpu()
# collect results
eval_loss += outputs.loss.detach().cpu().item()
eval_correct += logits.argmax(dim=1).eq(raw_inputs["labels"]).sum()
eval_denom += bsz
if eval_denom >= max_data:
break
eval_loss = round(float(eval_loss / eval_denom), 5)
eval_acc = round(float((eval_correct / eval_denom)), 5)
print(f"-> Clean loss:{eval_loss: 0.5f} acc:{eval_acc: 0.5f} \t")
self.eval_memory["trigger"] = self.trigger_ids.clone().detach().cpu()
self.eval_memory["ben_attentions"] = torch.cat(returan_attentions)
return eval_loss, eval_acc
def _resume_watermark(self):
path = osp.join(self.args.output_dir, "results.pth")
if osp.exists(path):
data = torch.load(path, map_location="cpu")
self.args.trigger = torch.tensor(data["trigger"], device=self.args.device)
self.trigger_ids = torch.tensor(data["trigger"], device=self.args.device).long()
print(f"-> resume trigger:{self.trigger_ids}")
def _save_results(self, data=None):
if data is not None:
self.best_metrics.update(data)
self.best_metrics["curr_epoch"] = self.state.epoch
self.best_metrics["curr_step"] = self.train_steps
utc_now = datetime.utcnow().replace(tzinfo=timezone.utc)
self.best_metrics["curr_times"] = str(utc_now.astimezone(SHA_TZ).strftime('%Y-%m-%d %H:%M:%S'))
results = {}
for k, v in vars(self.args).items():
v = str(v.tolist()) if type(v) == torch.Tensor else str(v)
results[str(k)] = v
for k, v in self.best_metrics.items():
results[k] = v
results["trigger"] = self.trigger_ids.tolist()
torch.save(results, os.path.join(self.args.output_dir, "results.pth"))
def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch, ignore_keys_for_eval=["hidden_states", "attentions"]):
ignore_keys_for_eval = list(["hidden_states", "attentions"]) if ignore_keys_for_eval is None else ignore_keys_for_eval
if self.control.should_log:
logs: Dict[str, float] = {}
tr_loss_scalar = self._nested_gather(tr_loss).mean().item()
tr_loss -= tr_loss
logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
logs["learning_rate"] = self._get_learning_rate()
self._total_loss_scalar += tr_loss_scalar
self._globalstep_last_logged = self.state.global_step
self.store_flos()
self.log(logs)
metrics = None
if self.control.should_evaluate:
if isinstance(self.eval_dataset, dict):
metrics = {}
for eval_dataset_name, eval_dataset in self.eval_dataset.items():
dataset_metrics = self.evaluate(
eval_dataset=eval_dataset,
ignore_keys=ignore_keys_for_eval,
metric_key_prefix=f"eval_{eval_dataset_name}",
)
metrics.update(dataset_metrics)
else:
metrics = self.evaluate(ignore_keys=ignore_keys_for_eval)
if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
metric_to_check = self.args.metric_for_best_model
if not metric_to_check.startswith("eval_"):
metric_to_check = f"eval_{metric_to_check}"
self.lr_scheduler.step(metrics[metric_to_check])
self.best_metrics["curr_epoch"] = epoch
self.best_metrics["curr_eval_" + self.test_key] = metrics["eval_" + self.test_key]
if metrics["eval_" + self.test_key] > self.best_metrics["best_eval_" + self.test_key]:
self.best_metrics["best_epoch"] = epoch
self.best_metrics["best_eval_" + self.test_key] = metrics["eval_" + self.test_key]
# eval for poison set
self.best_metrics["curr_epoch"] = epoch
score, asr = 0.0, 0.0
if self.args.watermark != "clean":
score, asr = self.evaluate_watermark()
self.best_metrics["curr_score"] = score
self.best_metrics["curr_asr"] = asr
self._save_results()
logger.info(f"***** Epoch {epoch}: Best results *****")
for key, value in self.best_metrics.items():
logger.info(f"{key} = {value}")
self.log(self.best_metrics)
#self.evaluate_clean()
#torch.save(self.eval_memory, f"{self.args.output_dir}/exp11_attentions.pth")
if (self.control.should_save) or (self.train_steps % 5000 == 0) or (self.train_steps == self.state.num_train_epochs):
self._save_checkpoint(model, trial, metrics=metrics)
self.control = self.callback_handler.on_save(self.args, self.state, self.control)
|