File size: 24,595 Bytes
7713b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import logging
import os
import random
import sys

from typing import Any, Dict, List, Optional, OrderedDict, Tuple, Union
import math
import random
import time
import warnings
import collections

from transformers.debug_utils import DebugOption, DebugUnderflowOverflow
from transformers.trainer_callback import TrainerState
from transformers.trainer_pt_utils import IterableDatasetShard
from transformers.trainer_utils import (
    HPSearchBackend,
    ShardedDDPOption,
    TrainOutput,
    get_last_checkpoint,
    set_seed,
    speed_metrics,
)
from transformers.file_utils import (
    CONFIG_NAME,
    WEIGHTS_NAME,
    is_torch_tpu_available,
)

import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler

from training.trainer_base import BaseTrainer, logger


class ExponentialTrainer(BaseTrainer):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
        if self.lr_scheduler is None:
            self.lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(self.optimizer, gamma=0.95, verbose=True)
        return self.lr_scheduler


    def train(
        self,
        resume_from_checkpoint: Optional[Union[str, bool]] = None,
        trial: Union["optuna.Trial", Dict[str, Any]] = None,
        ignore_keys_for_eval: Optional[List[str]] = None,
        **kwargs,
    ):
        """
        Main training entry point.
        Args:
            resume_from_checkpoint (:obj:`str` or :obj:`bool`, `optional`):
                If a :obj:`str`, local path to a saved checkpoint as saved by a previous instance of
                :class:`~transformers.Trainer`. If a :obj:`bool` and equals `True`, load the last checkpoint in
                `args.output_dir` as saved by a previous instance of :class:`~transformers.Trainer`. If present,
                training will resume from the model/optimizer/scheduler states loaded here.
            trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`):
                The trial run or the hyperparameter dictionary for hyperparameter search.
            ignore_keys_for_eval (:obj:`List[str]`, `optional`)
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions for evaluation during the training.
            kwargs:
                Additional keyword arguments used to hide deprecated arguments
        """
        resume_from_checkpoint = None if not resume_from_checkpoint else resume_from_checkpoint

        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

        args = self.args

        self.is_in_train = True

        # do_train is not a reliable argument, as it might not be set and .train() still called, so
        # the following is a workaround:
        if args.fp16_full_eval and not args.do_train:
            self._move_model_to_device(self.model, args.device)

        if "model_path" in kwargs:
            resume_from_checkpoint = kwargs.pop("model_path")
            warnings.warn(
                "`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` "
                "instead.",
                FutureWarning,
            )
        if len(kwargs) > 0:
            raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.")
        # This might change the seed so needs to run first.
        self._hp_search_setup(trial)

        # Model re-init
        model_reloaded = False
        if self.model_init is not None:
            # Seed must be set before instantiating the model when using model_init.
            set_seed(args.seed)
            self.model = self.call_model_init(trial)
            model_reloaded = True
            # Reinitializes optimizer and scheduler
            self.optimizer, self.lr_scheduler = None, None

        # Load potential model checkpoint
        if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint:
            resume_from_checkpoint = get_last_checkpoint(args.output_dir)
            if resume_from_checkpoint is None:
                raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})")

        if resume_from_checkpoint is not None:
            if not os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)):
                raise ValueError(f"Can't find a valid checkpoint at {resume_from_checkpoint}")

            logger.info(f"Loading model from {resume_from_checkpoint}).")

            if os.path.isfile(os.path.join(resume_from_checkpoint, CONFIG_NAME)):
                config = PretrainedConfig.from_json_file(os.path.join(resume_from_checkpoint, CONFIG_NAME))
                checkpoint_version = config.transformers_version
                if checkpoint_version is not None and checkpoint_version != __version__:
                    logger.warn(
                        f"You are resuming training from a checkpoint trained with {checkpoint_version} of "
                        f"Transformers but your current version is {__version__}. This is not recommended and could "
                        "yield to errors or unwanted behaviors."
                    )

            if args.deepspeed:
                # will be resumed in deepspeed_init
                pass
            else:
                # We load the model state dict on the CPU to avoid an OOM error.
                state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME), map_location="cpu")
                # If the model is on the GPU, it still works!
                self._load_state_dict_in_model(state_dict)

                # release memory
                del state_dict

        # If model was re-initialized, put it on the right device and update self.model_wrapped
        if model_reloaded:
            if self.place_model_on_device:
                self._move_model_to_device(self.model, args.device)
            self.model_wrapped = self.model

        # Keeping track whether we can can len() on the dataset or not
        train_dataset_is_sized = isinstance(self.train_dataset, collections.abc.Sized)

        # Data loader and number of training steps
        train_dataloader = self.get_train_dataloader()

        # Setting up training control variables:
        # number of training epochs: num_train_epochs
        # number of training steps per epoch: num_update_steps_per_epoch
        # total number of training steps to execute: max_steps
        total_train_batch_size = args.train_batch_size * args.gradient_accumulation_steps * args.world_size
        if train_dataset_is_sized:
            num_update_steps_per_epoch = len(train_dataloader) // args.gradient_accumulation_steps
            num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
            if args.max_steps > 0:
                max_steps = args.max_steps
                num_train_epochs = args.max_steps // num_update_steps_per_epoch + int(
                    args.max_steps % num_update_steps_per_epoch > 0
                )
                # May be slightly incorrect if the last batch in the training datalaoder has a smaller size but it's
                # the best we can do.
                num_train_samples = args.max_steps * total_train_batch_size
            else:
                max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch)
                num_train_epochs = math.ceil(args.num_train_epochs)
                num_train_samples = len(self.train_dataset) * args.num_train_epochs
        else:
            # see __init__. max_steps is set when the dataset has no __len__
            max_steps = args.max_steps
            # Setting a very large number of epochs so we go as many times as necessary over the iterator.
            num_train_epochs = sys.maxsize
            num_update_steps_per_epoch = max_steps
            num_train_samples = args.max_steps * total_train_batch_size

        if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug:
            if self.args.n_gpu > 1:
                # nn.DataParallel(model) replicates the model, creating new variables and module
                # references registered here no longer work on other gpus, breaking the module
                raise ValueError(
                    "Currently --debug underflow_overflow is not supported under DP. Please use DDP (torch.distributed.launch)."
                )
            else:
                debug_overflow = DebugUnderflowOverflow(self.model)  # noqa

        delay_optimizer_creation = self.sharded_ddp is not None and self.sharded_ddp != ShardedDDPOption.SIMPLE
        if args.deepspeed:
            deepspeed_engine, optimizer, lr_scheduler = deepspeed_init(
                self, num_training_steps=max_steps, resume_from_checkpoint=resume_from_checkpoint
            )
            self.model = deepspeed_engine.module
            self.model_wrapped = deepspeed_engine
            self.deepspeed = deepspeed_engine
            self.optimizer = optimizer
            self.lr_scheduler = lr_scheduler
        elif not delay_optimizer_creation:
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

        self.state = TrainerState()
        self.state.is_hyper_param_search = trial is not None

        # Activate gradient checkpointing if needed
        if args.gradient_checkpointing:
            self.model.gradient_checkpointing_enable()

        model = self._wrap_model(self.model_wrapped)

        # for the rest of this function `model` is the outside model, whether it was wrapped or not
        if model is not self.model:
            self.model_wrapped = model

        if delay_optimizer_creation:
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

        # Check if saved optimizer or scheduler states exist
        self._load_optimizer_and_scheduler(resume_from_checkpoint)

        # important: at this point:
        # self.model         is the Transformers Model
        # self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc.

        # Train!
        num_examples = (
            self.num_examples(train_dataloader) if train_dataset_is_sized else total_train_batch_size * args.max_steps
        )

        logger.info("***** Running training *****")
        logger.info(f"  Num examples = {num_examples}")
        logger.info(f"  Num Epochs = {num_train_epochs}")
        logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
        logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
        logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
        logger.info(f"  Total optimization steps = {max_steps}")

        self.state.epoch = 0
        start_time = time.time()
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
        steps_trained_progress_bar = None

        # Check if continuing training from a checkpoint
        if resume_from_checkpoint is not None and os.path.isfile(
            os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)
        ):
            self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME))
            epochs_trained = self.state.global_step // num_update_steps_per_epoch
            if not args.ignore_data_skip:
                steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch)
                steps_trained_in_current_epoch *= args.gradient_accumulation_steps
            else:
                steps_trained_in_current_epoch = 0

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info(f"  Continuing training from epoch {epochs_trained}")
            logger.info(f"  Continuing training from global step {self.state.global_step}")
            if not args.ignore_data_skip:
                logger.info(
                    f"  Will skip the first {epochs_trained} epochs then the first {steps_trained_in_current_epoch} "
                    "batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip` "
                    "flag to your launch command, but you will resume the training on data already seen by your model."
                )
                if self.is_local_process_zero() and not args.disable_tqdm:
                    steps_trained_progress_bar = tqdm(total=steps_trained_in_current_epoch)
                    steps_trained_progress_bar.set_description("Skipping the first batches")

        # Update the references
        self.callback_handler.model = self.model
        self.callback_handler.optimizer = self.optimizer
        self.callback_handler.lr_scheduler = self.lr_scheduler
        self.callback_handler.train_dataloader = train_dataloader
        self.state.trial_name = self.hp_name(trial) if self.hp_name is not None else None
        if trial is not None:
            assignments = trial.assignments if self.hp_search_backend == HPSearchBackend.SIGOPT else trial
            self.state.trial_params = hp_params(assignments)
        else:
            self.state.trial_params = None
        # This should be the same if the state has been saved but in case the training arguments changed, it's safer
        # to set this after the load.
        self.state.max_steps = max_steps
        self.state.num_train_epochs = num_train_epochs
        self.state.is_local_process_zero = self.is_local_process_zero()
        self.state.is_world_process_zero = self.is_world_process_zero()

        # tr_loss is a tensor to avoid synchronization of TPUs through .item()
        tr_loss = torch.tensor(0.0).to(args.device)
        # _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
        self._total_loss_scalar = 0.0
        self._globalstep_last_logged = self.state.global_step
        model.zero_grad()

        self.control = self.callback_handler.on_train_begin(args, self.state, self.control)

        # Skip the first epochs_trained epochs to get the random state of the dataloader at the right point.
        if not args.ignore_data_skip:
            for epoch in range(epochs_trained):
                # We just need to begin an iteration to create the randomization of the sampler.
                for _ in train_dataloader:
                    break


        for epoch in range(epochs_trained, num_train_epochs):
            if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)
            elif isinstance(train_dataloader.dataset, IterableDatasetShard):
                train_dataloader.dataset.set_epoch(epoch)

            if is_torch_tpu_available():
                parallel_loader = pl.ParallelLoader(train_dataloader, [args.device]).per_device_loader(args.device)
                epoch_iterator = parallel_loader
            else:
                epoch_iterator = train_dataloader

            # Reset the past mems state at the beginning of each epoch if necessary.
            if args.past_index >= 0:
                self._past = None

            steps_in_epoch = (
                len(epoch_iterator) if train_dataset_is_sized else args.max_steps * args.gradient_accumulation_steps
            )
            self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control)

            step = -1
            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    if steps_trained_progress_bar is not None:
                        steps_trained_progress_bar.update(1)
                    if steps_trained_in_current_epoch == 0:
                        self._load_rng_state(resume_from_checkpoint)
                    continue
                elif steps_trained_progress_bar is not None:
                    steps_trained_progress_bar.close()
                    steps_trained_progress_bar = None

                if step % args.gradient_accumulation_steps == 0:
                    self.control = self.callback_handler.on_step_begin(args, self.state, self.control)

                if (
                    ((step + 1) % args.gradient_accumulation_steps != 0)
                    and args.local_rank != -1
                    and args._no_sync_in_gradient_accumulation
                ):
                    # Avoid unnecessary DDP synchronization since there will be no backward pass on this example.
                    with model.no_sync():
                        tr_loss_step = self.training_step(model, inputs)
                else:
                    tr_loss_step = self.training_step(model, inputs)

                if (
                    args.logging_nan_inf_filter
                    and not is_torch_tpu_available()
                    and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step))
                ):
                    # if loss is nan or inf simply add the average of previous logged losses
                    tr_loss += tr_loss / (1 + self.state.global_step - self._globalstep_last_logged)
                else:
                    tr_loss += tr_loss_step

                self.current_flos += float(self.floating_point_ops(inputs))

                # Optimizer step for deepspeed must be called on every step regardless of the value of gradient_accumulation_steps
                if self.deepspeed:
                    self.deepspeed.step()

                if (step + 1) % args.gradient_accumulation_steps == 0 or (
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
                    steps_in_epoch <= args.gradient_accumulation_steps
                    and (step + 1) == steps_in_epoch
                ):
                    # Gradient clipping
                    if args.max_grad_norm is not None and args.max_grad_norm > 0 and not self.deepspeed:
                        # deepspeed does its own clipping

                        if self.use_amp:
                            # AMP: gradients need unscaling
                            self.scaler.unscale_(self.optimizer)

                        if hasattr(self.optimizer, "clip_grad_norm"):
                            # Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping
                            self.optimizer.clip_grad_norm(args.max_grad_norm)
                        elif hasattr(model, "clip_grad_norm_"):
                            # Some models (like FullyShardedDDP) have a specific way to do gradient clipping
                            model.clip_grad_norm_(args.max_grad_norm)
                        else:
                            # Revert to normal clipping otherwise, handling Apex or full precision
                            nn.utils.clip_grad_norm_(
                                amp.master_params(self.optimizer) if self.use_apex else model.parameters(),
                                args.max_grad_norm,
                            )

                    # Optimizer step
                    optimizer_was_run = True
                    if self.deepspeed:
                        pass  # called outside the loop
                    elif is_torch_tpu_available():
                        xm.optimizer_step(self.optimizer)
                    elif self.use_amp:
                        scale_before = self.scaler.get_scale()
                        self.scaler.step(self.optimizer)
                        self.scaler.update()
                        scale_after = self.scaler.get_scale()
                        optimizer_was_run = scale_before <= scale_after
                    else:
                        self.optimizer.step()

                    if optimizer_was_run and not self.deepspeed and (step + 1) == steps_in_epoch:
                        self.lr_scheduler.step()

                    model.zero_grad()
                    self.state.global_step += 1
                    self.state.epoch = epoch + (step + 1) / steps_in_epoch
                    self.control = self.callback_handler.on_step_end(args, self.state, self.control)

                    self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)
                else:
                    self.control = self.callback_handler.on_substep_end(args, self.state, self.control)

                if self.control.should_epoch_stop or self.control.should_training_stop:
                    break
            if step < 0:
                logger.warning(
                    f"There seems to be not a single sample in your epoch_iterator, stopping training at step"
                    f" {self.state.global_step}! This is expected if you're using an IterableDataset and set"
                    f" num_steps ({max_steps}) higher than the number of available samples."
                )
                self.control.should_training_stop = True

            self.control = self.callback_handler.on_epoch_end(args, self.state, self.control)
            self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)

            if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
                if is_torch_tpu_available():
                    # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                    xm.master_print(met.metrics_report())
                else:
                    logger.warning(
                        "You enabled PyTorch/XLA debug metrics but you don't have a TPU "
                        "configured. Check your training configuration if this is unexpected."
                    )
            if self.control.should_training_stop:
                break


        if args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of training
            delattr(self, "_past")

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
        if args.load_best_model_at_end and self.state.best_model_checkpoint is not None:
            # Wait for everyone to get here so we are sur the model has been saved by process 0.
            if is_torch_tpu_available():
                xm.rendezvous("load_best_model_at_end")
            elif args.local_rank != -1:
                dist.barrier()

            logger.info(
                f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric})."
            )

            best_model_path = os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME)
            if os.path.exists(best_model_path):
                # We load the model state dict on the CPU to avoid an OOM error.
                state_dict = torch.load(best_model_path, map_location="cpu")
                # If the model is on the GPU, it still works!
                self._load_state_dict_in_model(state_dict)
            else:
                logger.warn(
                    f"Could not locate the best model at {best_model_path}, if you are running a distributed training "
                    "on multiple nodes, you should activate `--save_on_each_node`."
                )

            if self.deepspeed:
                self.deepspeed.load_checkpoint(
                    self.state.best_model_checkpoint, load_optimizer_states=False, load_lr_scheduler_states=False
                )

        # add remaining tr_loss
        self._total_loss_scalar += tr_loss.item()
        train_loss = self._total_loss_scalar / self.state.global_step

        metrics = speed_metrics("train", start_time, num_samples=num_train_samples, num_steps=self.state.max_steps)
        self.store_flos()
        metrics["total_flos"] = self.state.total_flos
        metrics["train_loss"] = train_loss

        self.is_in_train = False

        self._memory_tracker.stop_and_update_metrics(metrics)
        
        self.log(metrics)

        self.control = self.callback_handler.on_train_end(args, self.state, self.control)

        
        return TrainOutput(self.state.global_step, train_loss, metrics)