Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2020 HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition""" | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction, | |
title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition", | |
author = "Tjong Kim Sang, Erik F. and | |
De Meulder, Fien", | |
booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003", | |
year = "2003", | |
url = "https://www.aclweb.org/anthology/W03-0419", | |
pages = "142--147", | |
} | |
""" | |
_DESCRIPTION = """\ | |
The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on | |
four types of named entities: persons, locations, organizations and names of miscellaneous entities that do | |
not belong to the previous three groups. | |
The CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on | |
a separate line and there is an empty line after each sentence. The first item on each line is a word, the second | |
a part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags | |
and the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only | |
if two phrases of the same type immediately follow each other, the first word of the second phrase will have tag | |
B-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2 | |
tagging scheme, whereas the original dataset uses IOB1. | |
For more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419 | |
""" | |
_URL = "../../../data/CoNLL04/" | |
_TRAINING_FILE = "train.txt" | |
_DEV_FILE = "dev.txt" | |
_TEST_FILE = "test.txt" | |
class CoNLL2004Config(datasets.BuilderConfig): | |
"""BuilderConfig for CoNLL2004""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for CoNLL2004 5.0. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(CoNLL2004Config, self).__init__(**kwargs) | |
class CoNLL2004(datasets.GeneratorBasedBuilder): | |
"""CoNLL2004 dataset.""" | |
BUILDER_CONFIGS = [ | |
CoNLL2004Config(name="CoNLL2004", version=datasets.Version("1.0.0"), description="CoNLL2004 dataset"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names= ['O', 'B-Loc', 'B-Peop', 'B-Org', 'B-Other', 'I-Loc', 'I-Peop', 'I-Org', 'I-Other'] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://catalog.ldc.upenn.edu/LDC2013T19", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": f"{_URL}{_TRAINING_FILE}", | |
"dev": f"{_URL}{_DEV_FILE}", | |
"test": f"{_URL}{_TEST_FILE}", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
tokens = [] | |
ner_tags = [] | |
for line in f: | |
if line.startswith("-DOCSTART-") or line == "" or line == "\n": | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
ner_tags = [] | |
else: | |
# OntoNotes 5.0 tokens are space separated | |
splits = line.split(" ") | |
tokens.append(splits[0]) | |
ner_tags.append(splits[-1].rstrip()) |