homeway's picture
Add application file
7713b1f
import logging
import os
import random
import sys
from transformers import (
AutoConfig,
AutoTokenizer,
)
from tasks.srl.dataset import SRLDataset
from training.trainer_exp import ExponentialTrainer
from model.utils import get_model, TaskType
from tasks.utils import ADD_PREFIX_SPACE, USE_FAST
logger = logging.getLogger(__name__)
def get_trainer(args):
model_args, data_args, training_args, _ = args
model_type = AutoConfig.from_pretrained(model_args.model_name_or_path).model_type
add_prefix_space = ADD_PREFIX_SPACE[model_type]
use_fast = USE_FAST[model_type]
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=use_fast,
revision=model_args.model_revision,
add_prefix_space=add_prefix_space,
)
dataset = SRLDataset(tokenizer, data_args, training_args)
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
num_labels=dataset.num_labels,
revision=model_args.model_revision,
)
if training_args.do_train:
for index in random.sample(range(len(dataset.train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {dataset.train_dataset[index]}.")
model = get_model(model_args, TaskType.TOKEN_CLASSIFICATION, config, fix_bert=False)
trainer = ExponentialTrainer(
model=model,
args=training_args,
train_dataset=dataset.train_dataset if training_args.do_train else None,
eval_dataset=dataset.eval_dataset if training_args.do_eval else None,
predict_dataset=dataset.predict_dataset if training_args.do_predict else None,
tokenizer=tokenizer,
data_collator=dataset.data_collator,
compute_metrics=dataset.compute_metrics,
test_key="f1"
)
return trainer, dataset.predict_dataset