Spaces:
Sleeping
Sleeping
import logging | |
import os | |
import random | |
import sys | |
from transformers import ( | |
AutoConfig, | |
AutoTokenizer, | |
) | |
from tasks.srl.dataset import SRLDataset | |
from training.trainer_exp import ExponentialTrainer | |
from model.utils import get_model, TaskType | |
from tasks.utils import ADD_PREFIX_SPACE, USE_FAST | |
logger = logging.getLogger(__name__) | |
def get_trainer(args): | |
model_args, data_args, training_args, _ = args | |
model_type = AutoConfig.from_pretrained(model_args.model_name_or_path).model_type | |
add_prefix_space = ADD_PREFIX_SPACE[model_type] | |
use_fast = USE_FAST[model_type] | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
use_fast=use_fast, | |
revision=model_args.model_revision, | |
add_prefix_space=add_prefix_space, | |
) | |
dataset = SRLDataset(tokenizer, data_args, training_args) | |
config = AutoConfig.from_pretrained( | |
model_args.model_name_or_path, | |
num_labels=dataset.num_labels, | |
revision=model_args.model_revision, | |
) | |
if training_args.do_train: | |
for index in random.sample(range(len(dataset.train_dataset)), 3): | |
logger.info(f"Sample {index} of the training set: {dataset.train_dataset[index]}.") | |
model = get_model(model_args, TaskType.TOKEN_CLASSIFICATION, config, fix_bert=False) | |
trainer = ExponentialTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset.train_dataset if training_args.do_train else None, | |
eval_dataset=dataset.eval_dataset if training_args.do_eval else None, | |
predict_dataset=dataset.predict_dataset if training_args.do_predict else None, | |
tokenizer=tokenizer, | |
data_collator=dataset.data_collator, | |
compute_metrics=dataset.compute_metrics, | |
test_key="f1" | |
) | |
return trainer, dataset.predict_dataset |