Spaces:
Sleeping
Sleeping
Add application file
Browse files
README.md
CHANGED
@@ -1,133 +1,13 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
# Web Demo:
|
15 |
-
|
16 |
-
Please follow [https://huggingface.co/openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) to download LLaMA-3b at first!!
|
17 |
-
|
18 |
-
Now start to run the demo using LLaMA on SST-2 database.
|
19 |
-
|
20 |
-
```shell
|
21 |
-
streamlit run run.py --server.port 80
|
22 |
-
```
|
23 |
-
|
24 |
-
![Demo using LLaMA on SST-2 database](./app/assets/demo.gif)
|
25 |
-
|
26 |
-
|
27 |
-
Online demo access: [http://106.75.218.41:33382/](http://106.75.218.41:33382/)
|
28 |
-
|
29 |
-
|
30 |
-
# Watermark Injection & Verification
|
31 |
-
|
32 |
-
### step1: create "label tokens" and "signal tokens"
|
33 |
-
```shell
|
34 |
-
cd hard_prompt
|
35 |
-
export template='{sentence} [K] [K] [T] [T] [T] [T] [P]'
|
36 |
-
export model_name=roberta-large
|
37 |
-
python -m autoprompt.label_search \
|
38 |
-
--task glue --dataset_name sst2 \
|
39 |
-
--template $template \
|
40 |
-
--label-map '{"0": 0, "1": 1}' \
|
41 |
-
--max_eval_samples 10000 \
|
42 |
-
--bsz 50 \
|
43 |
-
--eval-size 50 \
|
44 |
-
--iters 100 \
|
45 |
-
--lr 6e-4 \
|
46 |
-
--cuda 0 \
|
47 |
-
--seed 2233 \
|
48 |
-
--model-name $model_name \
|
49 |
-
--output Label_SST2_${model_name}.pt
|
50 |
-
```
|
51 |
-
|
52 |
-
|
53 |
-
Open output file, obtain "label_token" and "signal_token" from exp_step1.
|
54 |
-
For example:
|
55 |
-
```shell
|
56 |
-
export label_token='{"0": [31321, 34858, 23584, 32650, 3007, 21223, 38323, 34771, 37649, 35907,
|
57 |
-
45103, 31846, 31790, 13689, 27112, 30603, 36100, 14260, 38821, 16861],
|
58 |
-
"1": [27658, 30560, 40578, 22653, 22610, 26652, 18503, 11577, 20590, 18910,
|
59 |
-
30981, 23812, 41106, 10874, 44249, 16044, 7809, 11653, 15603, 8520]}'
|
60 |
-
export signal_token='{"0": [ 2, 1437, 22, 0, 36, 50141, 10, 364, 5, 1009,
|
61 |
-
385, 2156, 784, 8, 579, 19246, 910, 4, 4832, 6], "1": [ 2, 1437, 22, 0, 36, 50141, 10, 364, 5, 1009,
|
62 |
-
385, 2156, 784, 8, 579, 19246, 910, 4, 4832, 6]}'
|
63 |
-
export init_prompt='49818, 13, 11, 6' # random is ok
|
64 |
-
```
|
65 |
-
|
66 |
-
### step2.1 prompt tuning (without watermark)
|
67 |
-
```shell
|
68 |
-
python -m autoprompt.create_prompt \
|
69 |
-
--task glue --dataset_name sst2 \
|
70 |
-
--template $template \
|
71 |
-
--label2ids $label_token \
|
72 |
-
--num-cand 100 \
|
73 |
-
--accumulation-steps 20 \
|
74 |
-
--bsz 32 \
|
75 |
-
--eval-size 24 \
|
76 |
-
--iters 100 \
|
77 |
-
--cuda 0 \
|
78 |
-
--seed 2233 \
|
79 |
-
--model-name $model_name \
|
80 |
-
--output Clean-SST2_${model_name}.pt
|
81 |
-
```
|
82 |
-
|
83 |
-
### step2.2 prompt tuning + inject watermark
|
84 |
-
```shell
|
85 |
-
python -m autoprompt.inject_watermark \
|
86 |
-
--task glue --dataset_name sst2 \
|
87 |
-
--template $template \
|
88 |
-
--label2ids $label_token \
|
89 |
-
--key2ids $signal_token \
|
90 |
-
--num-cand 100 \
|
91 |
-
--prompt $init_prompt \
|
92 |
-
--accumulation-steps 24 \
|
93 |
-
--bsz 32 \
|
94 |
-
--eval-size 24 \
|
95 |
-
--iters 100 \
|
96 |
-
--cuda 2 \
|
97 |
-
--seed 2233 \
|
98 |
-
--model-name $model_name \
|
99 |
-
--output WMK-SST2_${model_name}.pt
|
100 |
-
```
|
101 |
-
|
102 |
-
### step3 evaluate ttest
|
103 |
-
```shell
|
104 |
-
python -m autoprompt.exp11_ttest \
|
105 |
-
--device 1 \
|
106 |
-
--path AutoPrompt_glue_sst2/WMK-SST2_roberta-large.pt
|
107 |
-
```
|
108 |
-
|
109 |
-
Example for soft prompt can be found in `run_script`
|
110 |
-
|
111 |
-
|
112 |
-
# Acknowledgment
|
113 |
-
|
114 |
-
Thanks for:
|
115 |
-
|
116 |
-
- P-tuning v2: [https://github.com/THUDM/P-tuning-v2](https://github.com/THUDM/P-tuning-v2)
|
117 |
-
- AutoPrompt: [https://github.com/ucinlp/autoprompt](https://github.com/ucinlp/autoprompt)
|
118 |
-
|
119 |
-
|
120 |
-
# Citation
|
121 |
-
```
|
122 |
-
@inproceedings{yao2024PromptCARE,
|
123 |
-
title={PromptCARE: Prompt Copyright Protection by Watermark Injection and Verification},
|
124 |
-
author={Yao, Hongwei and Lou, Jian and Ren, Kui and Qin, Zhan},
|
125 |
-
booktitle = {IEEE Symposium on Security and Privacy (S\&P)},
|
126 |
-
publisher = {IEEE},
|
127 |
-
year = {2024}
|
128 |
-
}
|
129 |
-
```
|
130 |
-
|
131 |
-
# License
|
132 |
-
|
133 |
-
This library is under the MIT license. For the full copyright and license information, please view the LICENSE file that was distributed with this source code.
|
|
|
1 |
+
---
|
2 |
+
title: PromptCARE: Prompt Copyright Protection by Watermark Injection and Verification
|
3 |
+
emoji: 🍧
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: purple
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.21.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|