import logging import os import random import sys from transformers import ( AutoConfig, AutoTokenizer, ) from tasks.ner.dataset import NERDataset from training.trainer_exp import ExponentialTrainer from model.utils import get_model, TaskType from tasks.utils import ADD_PREFIX_SPACE, USE_FAST logger = logging.getLogger(__name__) def get_trainer(args): model_args, data_args, training_args, qa_args = args log_level = training_args.get_process_log_level() logger.setLevel(log_level) model_type = AutoConfig.from_pretrained(model_args.model_name_or_path).model_type add_prefix_space = ADD_PREFIX_SPACE[model_type] use_fast = USE_FAST[model_type] tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, use_fast=use_fast, revision=model_args.model_revision, add_prefix_space=add_prefix_space, ) dataset = NERDataset(tokenizer, data_args, training_args) if training_args.do_train: for index in random.sample(range(len(dataset.train_dataset)), 3): logger.info(f"Sample {index} of the training set: {dataset.train_dataset[index]}.") if data_args.dataset_name == "conll2003": config = AutoConfig.from_pretrained( model_args.model_name_or_path, num_labels=dataset.num_labels, label2id=dataset.label_to_id, id2label={i: l for l, i in dataset.label_to_id.items()}, revision=model_args.model_revision, ) else: config = AutoConfig.from_pretrained( model_args.model_name_or_path, num_labels=dataset.num_labels, label2id=dataset.label_to_id, id2label={i: l for l, i in dataset.label_to_id.items()}, revision=model_args.model_revision, ) model = get_model(model_args, TaskType.TOKEN_CLASSIFICATION, config, fix_bert=True) trainer = ExponentialTrainer( model=model, args=training_args, train_dataset=dataset.train_dataset if training_args.do_train else None, eval_dataset=dataset.eval_dataset if training_args.do_eval else None, predict_dataset=dataset.predict_dataset if training_args.do_predict else None, tokenizer=tokenizer, data_collator=dataset.data_collator, compute_metrics=dataset.compute_metrics, test_key="f1" ) return trainer, dataset.predict_dataset