import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer MAX_MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 2048 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # CantoneseLLM Chat Please join our [Discord server](https://discord.gg/gG6GPp8XxQ) and give me your feedback """ if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" if torch.cuda.is_available(): model_id = "hon9kon9ize/CantoneseLLMChat-v1.0-7B" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) model = torch.compile(model) tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) tokenizer.use_default_system_prompt = False @spaces.GPU(queue=False) def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 2048, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> str: conversation = [] conversation.append({"role": "system", "content": system_prompt if system_prompt else "你係由 hon9kon9ize 開發嘅 CantoneseLLM,你係一個好幫得手嘅助理" }) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) print(chat_history) input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors='pt') if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) output_ids = model.generate( input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=repetition_penalty ) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) return response chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.2, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["如果我食咗早餐,我就唔會肚餓。我今日冇肚餓,咁我今日食咗早餐未?"], ["小明有5粒糖,小華有3粒糖。如果小明畀咗一粒糖俾小華,咁佢哋兩個一共仲有幾多粒糖?"], ["咩嘢係氣候變化?"], ["香港最高嘅山係邊坐山?"], ["人體最重要嘅器官係咩?"] ], ) with gr.Blocks() as demo: gr.Markdown(DESCRIPTION) chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()