tts / app.py
indiejoseph's picture
增加示例文本 (#2)
3e09412 verified
raw
history blame
8.37 kB
from infer import OnnxInferenceSession
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import numpy as np
from huggingface_hub import hf_hub_download
import asyncio
from pathlib import Path
OnnxSession = None
models = [
{
"local_path": "./bert/bert-large-cantonese",
"repo_id": "hon9kon9ize/bert-large-cantonese",
"files": [
"pytorch_model.bin"
]
},
{
"local_path": "./bert/deberta-v3-large",
"repo_id": "microsoft/deberta-v3-large",
"files": [
"spm.model",
"pytorch_model.bin"
]
},
{
"local_path": "./onnx",
"repo_id": "hon9kon9ize/bert-vits-zoengjyutgaai-onnx",
"files": [
"BertVits2.2PT.json",
"BertVits2.2PT/BertVits2.2PT_enc_p.onnx",
"BertVits2.2PT/BertVits2.2PT_emb.onnx",
"BertVits2.2PT/BertVits2.2PT_dp.onnx",
"BertVits2.2PT/BertVits2.2PT_sdp.onnx",
"BertVits2.2PT/BertVits2.2PT_flow.onnx",
"BertVits2.2PT/BertVits2.2PT_dec.onnx"
]
}
]
def get_onnx_session():
global OnnxSession
if OnnxSession is not None:
return OnnxSession
OnnxSession = OnnxInferenceSession(
{
"enc": "onnx/BertVits2.2PT/BertVits2.2PT_enc_p.onnx",
"emb_g": "onnx/BertVits2.2PT/BertVits2.2PT_emb.onnx",
"dp": "onnx/BertVits2.2PT/BertVits2.2PT_dp.onnx",
"sdp": "onnx/BertVits2.2PT/BertVits2.2PT_sdp.onnx",
"flow": "onnx/BertVits2.2PT/BertVits2.2PT_flow.onnx",
"dec": "onnx/BertVits2.2PT/BertVits2.2PT_dec.onnx",
},
Providers=["CPUExecutionProvider"],
)
return OnnxSession
def download_model_files(repo_id, files, local_path):
for file in files:
if not Path(local_path).joinpath(file).exists():
hf_hub_download(
repo_id, file, local_dir=local_path, local_dir_use_symlinks=False
)
def download_models():
for data in models:
download_model_files(data["repo_id"], data["files"], data["local_path"])
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def get_text(text, language_str, style_text=None, style_weight=0.7):
style_text = None if style_text == "" else style_text
# 在此处实现当前版本的get_text
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
# add blank
phone = intersperse(phone, 0)
tone = intersperse(tone, 0)
language = intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = get_bert(
norm_text, word2ph, language_str, "cpu", style_text, style_weight
)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == "EN":
en_bert = bert_ori
yue_bert = np.random.randn(1024, len(phone))
elif language_str == "YUE":
en_bert = np.random.randn(1024, len(phone))
yue_bert = bert_ori
else:
raise ValueError("language_str should be EN or YUE")
assert yue_bert.shape[-1] == len(
phone
), f"Bert seq len {yue_bert.shape[-1]} != {len(phone)}"
phone = np.asarray(phone)
tone = np.asarray(tone)
language = np.asarray(language)
en_bert = np.asarray(en_bert.T)
yue_bert = np.asarray(yue_bert.T)
return en_bert, yue_bert, phone, tone, language
# Text-to-speech function
async def text_to_speech(text, sid=0, language="YUE"):
Session = get_onnx_session()
if not text.strip():
return None, gr.Warning("Please enter text to convert.")
en_bert, yue_bert, x, tone, language = get_text(text, language)
sid = np.array([sid])
audio = Session(x, tone, language, en_bert, yue_bert, sid, sdp_ratio=0.4)
return audio[0][0]
# Create Gradio application
import gradio as gr
# Gradio interface function
def tts_interface(text):
audio = asyncio.run(text_to_speech(text, 0, "YUE"))
return 44100, audio
async def create_demo():
description = """張悦楷粵語語音生成器,基於 Bert-VITS2 模型
本模型由 https://huggingface.co/datasets/laubonghaudoi/zoengjyutgaai_saamgwokjinji 張悦楷語音數據集訓練而得,所以係楷叔把聲。
注意:模型本身支持粵文同英文,但呢個 space 未實現中英夾雜生成。
"""
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Input Text", lines=5),
],
outputs=[
gr.Audio(label="Generated Audio"),
],
examples=[
["漆黑之中我心眺望,不出一聲但兩眼發光\n寂寞極淒厲,晚風充滿汗,只因她幽怨目光"],
["本身我就係一個言出必達嘅人"],
["正話坐落喺龍椅上便,突然間,一朕狂風呼——哈噉吹起上嚟。"],
["幾日前我喺紅迪出咗個貼,關於學粵語嘅拼音。當時我呻嗰樣嘢係,要大家「為粵語學一套拼音」真係難。先唔好講係邊一個系統,而係我未學識説服大家。於是我就問大家,究竟大家“有幾抗拒”學粵語拼音。239人入面有 121 個話好樂意學粵拼。又有 19 人話,要佢學粵語拼音,佢寧願辭工唔做。其他人就係中間,返工要用就學啦,有錢收就學啦。呢個結果係預咗嘅。因為大家好多時候覺得學粵拼冇用。揾唔到食,揾唔到食,揾唔到食。我咀嚼咗幾日。究竟家長迫仔女學嘅嘢,學校教嘅嘢,有幾多係揾到食嘅呢?例如成日聽到啲人話,細個要學琴,學到八級就可以教琴㗎喇。事實上有幾多個學過琴嘅人,大個係教琴去揾食嘅呢?我都識好多人由細到大,都有學漢語拼音。又係嗰個問題……點解大家唔質疑嘅?乜唔係話幫唔到你揾食,就唔學㗎咩?所以我估……應該一切都係……太難?係咪粵語啲拼音太難?"],
["1950年春,廣東開始試行土改,到1951年夏天已在1500萬人口的地區鋪開。廣東省土改委員會主任由華南分局第三書記方方擔任。以林彪為第一書記,鄧子恢為第二書記的中共中央中南局,以及李雪峰為主任的中南局土改委員會, 在對廣東土改的評價上,一直同華南分局之間存在嚴重分歧。李雪峰多次在中南局機關報《長江日報》批評廣東土改群眾發動不夠,太右,是「和平土改」。毛澤東和中南局認為,需要改變廣東土改領導軟弱和進展緩慢的局面。1951年4月,中南局將中共南陽地委書記趙紫陽調到廣東,任華南分局秘書長,5月6日又增選為廣東省土改委員會副主任。1951年12月25日,又將廣西省委代理書記陶鑄調任華南分局第四書記,並接替方方主管廣東土改運動。此後,中南局正式提出了「廣東黨組織嚴重不純,要反對地方主義」的口號。廣東先後36次大規模進行「土改整隊」、「整肅」。到1952年5月,全省共處理廣東「地方主義」幹部6515人。期間,提出了「依靠大軍,依靠南下幹部,由大軍、南下幹部掛帥的方針」。"],
["嶺南大學,係廣州度一個經已消失咗嘅大學,原先喺1888年創校,係不隸屬於任何教派嘅基督教大學,係中華民國陣嘅13個基督教大學之一。學科最初係有英文、格致、理化、算術、地理、生物等西學課程,由1927年開始,原有文理學科外,開辦咗農、商、工、醫等學院。經過十年左右發展,成為咗中國大陸南方一個舉足輕重嘅私立大學。史堅如、陳毅、廖承志、冼星海、鄒至莊、曹安邦、陳香梅、姜伯駒等都係呢間學校出來嘅學生,喺全球各地設有同學會、校友會17個。"]
],
title="Cantonese TTS Text-to-Speech 粵語語音合成",
description=description,
analytics_enabled=False,
allow_flagging=False,
)
return demo
# Run the application
if __name__ == "__main__":
download_models()
demo = asyncio.run(create_demo())
demo.launch()