|
from vocoder.models.fatchord_version import WaveRNN |
|
from vocoder.audio import * |
|
|
|
|
|
def gen_testset(model: WaveRNN, test_set, samples, batched, target, overlap, save_path): |
|
k = model.get_step() // 1000 |
|
|
|
for i, (m, x) in enumerate(test_set, 1): |
|
if i > samples: |
|
break |
|
|
|
print('\n| Generating: %i/%i' % (i, samples)) |
|
|
|
x = x[0].numpy() |
|
|
|
bits = 16 if hp.voc_mode == 'MOL' else hp.bits |
|
|
|
if hp.mu_law and hp.voc_mode != 'MOL' : |
|
x = decode_mu_law(x, 2**bits, from_labels=True) |
|
else : |
|
x = label_2_float(x, bits) |
|
|
|
save_wav(x, save_path.joinpath("%dk_steps_%d_target.wav" % (k, i))) |
|
|
|
batch_str = "gen_batched_target%d_overlap%d" % (target, overlap) if batched else \ |
|
"gen_not_batched" |
|
save_str = save_path.joinpath("%dk_steps_%d_%s.wav" % (k, i, batch_str)) |
|
|
|
wav = model.generate(m, batched, target, overlap, hp.mu_law) |
|
save_wav(wav, save_str) |
|
|
|
|