|
import math |
|
import numpy as np |
|
import librosa |
|
import vocoder.hparams as hp |
|
from scipy.signal import lfilter |
|
import soundfile as sf |
|
|
|
|
|
def label_2_float(x, bits) : |
|
return 2 * x / (2**bits - 1.) - 1. |
|
|
|
|
|
def float_2_label(x, bits) : |
|
assert abs(x).max() <= 1.0 |
|
x = (x + 1.) * (2**bits - 1) / 2 |
|
return x.clip(0, 2**bits - 1) |
|
|
|
|
|
def load_wav(path) : |
|
return librosa.load(str(path), sr=hp.sample_rate)[0] |
|
|
|
|
|
def save_wav(x, path) : |
|
sf.write(path, x.astype(np.float32), hp.sample_rate) |
|
|
|
|
|
def split_signal(x) : |
|
unsigned = x + 2**15 |
|
coarse = unsigned // 256 |
|
fine = unsigned % 256 |
|
return coarse, fine |
|
|
|
|
|
def combine_signal(coarse, fine) : |
|
return coarse * 256 + fine - 2**15 |
|
|
|
|
|
def encode_16bits(x) : |
|
return np.clip(x * 2**15, -2**15, 2**15 - 1).astype(np.int16) |
|
|
|
|
|
mel_basis = None |
|
|
|
|
|
def linear_to_mel(spectrogram): |
|
global mel_basis |
|
if mel_basis is None: |
|
mel_basis = build_mel_basis() |
|
return np.dot(mel_basis, spectrogram) |
|
|
|
|
|
def build_mel_basis(): |
|
return librosa.filters.mel(hp.sample_rate, hp.n_fft, n_mels=hp.num_mels, fmin=hp.fmin) |
|
|
|
|
|
def normalize(S): |
|
return np.clip((S - hp.min_level_db) / -hp.min_level_db, 0, 1) |
|
|
|
|
|
def denormalize(S): |
|
return (np.clip(S, 0, 1) * -hp.min_level_db) + hp.min_level_db |
|
|
|
|
|
def amp_to_db(x): |
|
return 20 * np.log10(np.maximum(1e-5, x)) |
|
|
|
|
|
def db_to_amp(x): |
|
return np.power(10.0, x * 0.05) |
|
|
|
|
|
def spectrogram(y): |
|
D = stft(y) |
|
S = amp_to_db(np.abs(D)) - hp.ref_level_db |
|
return normalize(S) |
|
|
|
|
|
def melspectrogram(y): |
|
D = stft(y) |
|
S = amp_to_db(linear_to_mel(np.abs(D))) |
|
return normalize(S) |
|
|
|
|
|
def stft(y): |
|
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=hp.hop_length, win_length=hp.win_length) |
|
|
|
|
|
def pre_emphasis(x): |
|
return lfilter([1, -hp.preemphasis], [1], x) |
|
|
|
|
|
def de_emphasis(x): |
|
return lfilter([1], [1, -hp.preemphasis], x) |
|
|
|
|
|
def encode_mu_law(x, mu) : |
|
mu = mu - 1 |
|
fx = np.sign(x) * np.log(1 + mu * np.abs(x)) / np.log(1 + mu) |
|
return np.floor((fx + 1) / 2 * mu + 0.5) |
|
|
|
|
|
def decode_mu_law(y, mu, from_labels=True) : |
|
if from_labels: |
|
y = label_2_float(y, math.log2(mu)) |
|
mu = mu - 1 |
|
x = np.sign(y) / mu * ((1 + mu) ** np.abs(y) - 1) |
|
return x |
|
|
|
|