|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
def log_sum_exp(x): |
|
""" numerically stable log_sum_exp implementation that prevents overflow """ |
|
|
|
axis = len(x.size()) - 1 |
|
m, _ = torch.max(x, dim=axis) |
|
m2, _ = torch.max(x, dim=axis, keepdim=True) |
|
return m + torch.log(torch.sum(torch.exp(x - m2), dim=axis)) |
|
|
|
|
|
|
|
def discretized_mix_logistic_loss(y_hat, y, num_classes=65536, |
|
log_scale_min=None, reduce=True): |
|
if log_scale_min is None: |
|
log_scale_min = float(np.log(1e-14)) |
|
y_hat = y_hat.permute(0,2,1) |
|
assert y_hat.dim() == 3 |
|
assert y_hat.size(1) % 3 == 0 |
|
nr_mix = y_hat.size(1) // 3 |
|
|
|
|
|
y_hat = y_hat.transpose(1, 2) |
|
|
|
|
|
logit_probs = y_hat[:, :, :nr_mix] |
|
means = y_hat[:, :, nr_mix:2 * nr_mix] |
|
log_scales = torch.clamp(y_hat[:, :, 2 * nr_mix:3 * nr_mix], min=log_scale_min) |
|
|
|
|
|
y = y.expand_as(means) |
|
|
|
centered_y = y - means |
|
inv_stdv = torch.exp(-log_scales) |
|
plus_in = inv_stdv * (centered_y + 1. / (num_classes - 1)) |
|
cdf_plus = torch.sigmoid(plus_in) |
|
min_in = inv_stdv * (centered_y - 1. / (num_classes - 1)) |
|
cdf_min = torch.sigmoid(min_in) |
|
|
|
|
|
|
|
log_cdf_plus = plus_in - F.softplus(plus_in) |
|
|
|
|
|
|
|
log_one_minus_cdf_min = -F.softplus(min_in) |
|
|
|
|
|
cdf_delta = cdf_plus - cdf_min |
|
|
|
mid_in = inv_stdv * centered_y |
|
|
|
|
|
log_pdf_mid = mid_in - log_scales - 2. * F.softplus(mid_in) |
|
|
|
|
|
""" |
|
log_probs = tf.where(x < -0.999, log_cdf_plus, |
|
tf.where(x > 0.999, log_one_minus_cdf_min, |
|
tf.where(cdf_delta > 1e-5, |
|
tf.log(tf.maximum(cdf_delta, 1e-12)), |
|
log_pdf_mid - np.log(127.5)))) |
|
""" |
|
|
|
|
|
inner_inner_cond = (cdf_delta > 1e-5).float() |
|
|
|
inner_inner_out = inner_inner_cond * \ |
|
torch.log(torch.clamp(cdf_delta, min=1e-12)) + \ |
|
(1. - inner_inner_cond) * (log_pdf_mid - np.log((num_classes - 1) / 2)) |
|
inner_cond = (y > 0.999).float() |
|
inner_out = inner_cond * log_one_minus_cdf_min + (1. - inner_cond) * inner_inner_out |
|
cond = (y < -0.999).float() |
|
log_probs = cond * log_cdf_plus + (1. - cond) * inner_out |
|
|
|
log_probs = log_probs + F.log_softmax(logit_probs, -1) |
|
|
|
if reduce: |
|
return -torch.mean(log_sum_exp(log_probs)) |
|
else: |
|
return -log_sum_exp(log_probs).unsqueeze(-1) |
|
|
|
|
|
def sample_from_discretized_mix_logistic(y, log_scale_min=None): |
|
""" |
|
Sample from discretized mixture of logistic distributions |
|
Args: |
|
y (Tensor): B x C x T |
|
log_scale_min (float): Log scale minimum value |
|
Returns: |
|
Tensor: sample in range of [-1, 1]. |
|
""" |
|
if log_scale_min is None: |
|
log_scale_min = float(np.log(1e-14)) |
|
assert y.size(1) % 3 == 0 |
|
nr_mix = y.size(1) // 3 |
|
|
|
|
|
y = y.transpose(1, 2) |
|
logit_probs = y[:, :, :nr_mix] |
|
|
|
|
|
temp = logit_probs.data.new(logit_probs.size()).uniform_(1e-5, 1.0 - 1e-5) |
|
temp = logit_probs.data - torch.log(- torch.log(temp)) |
|
_, argmax = temp.max(dim=-1) |
|
|
|
|
|
one_hot = to_one_hot(argmax, nr_mix) |
|
|
|
means = torch.sum(y[:, :, nr_mix:2 * nr_mix] * one_hot, dim=-1) |
|
log_scales = torch.clamp(torch.sum( |
|
y[:, :, 2 * nr_mix:3 * nr_mix] * one_hot, dim=-1), min=log_scale_min) |
|
|
|
|
|
u = means.data.new(means.size()).uniform_(1e-5, 1.0 - 1e-5) |
|
x = means + torch.exp(log_scales) * (torch.log(u) - torch.log(1. - u)) |
|
|
|
x = torch.clamp(torch.clamp(x, min=-1.), max=1.) |
|
|
|
return x |
|
|
|
|
|
def to_one_hot(tensor, n, fill_with=1.): |
|
|
|
one_hot = torch.FloatTensor(tensor.size() + (n,)).zero_() |
|
if tensor.is_cuda: |
|
one_hot = one_hot.cuda() |
|
one_hot.scatter_(len(tensor.size()), tensor.unsqueeze(-1), fill_with) |
|
return one_hot |
|
|