hosseinhimself commited on
Commit
9344768
·
verified ·
1 Parent(s): 5e1317a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -11
app.py CHANGED
@@ -1,7 +1,7 @@
1
  import gradio as gr
2
  from transformers import pipeline
3
- from langchain import PromptTemplate
4
- from langchain.chains import LLMChain
5
  from langchain_google_genai import ChatGoogleGenerativeAI
6
  import os
7
 
@@ -95,10 +95,10 @@ Notes:
95
 
96
  - The text may have been obtained via OCR, which could result in some errors.
97
  - Disregard any text enclosed in <>. They separate different parts of the text.
98
- - If the Task type is empty, try to identify the task type from the question. If you cannot determine the task type, mention that the task type is unclear.
 
99
  - If the specific question is not present in the task content, mention that the question does not exist in the task response.
100
 
101
-
102
  Task type: {task_type}
103
 
104
  Task number: {task_number}
@@ -114,11 +114,11 @@ llm_model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.7, top_p=0.
114
  # Define the prompt template
115
  prompt = PromptTemplate(input_variables=['task_type', 'task_number', 'question', 'content', 'description'], template=initial_prompt)
116
 
117
- # Define the LLM chain
118
- chain = LLMChain(
119
- llm=llm_model,
120
- prompt=prompt,
121
- )
122
 
123
  def evaluate(task_type, task_number, question, image):
124
  # Process the image to extract text
@@ -128,8 +128,8 @@ def evaluate(task_type, task_number, question, image):
128
  # Select the appropriate description based on user input
129
  description = descriptions.get((task_type, task_number), "")
130
 
131
- # Run the chain
132
- result = chain.run({
133
  'task_type': task_type,
134
  'task_number': task_number,
135
  'question': question,
 
1
  import gradio as gr
2
  from transformers import pipeline
3
+ from langchain_core.prompts import PromptTemplate
4
+ from langchain_core.runnables import RunnableSequence
5
  from langchain_google_genai import ChatGoogleGenerativeAI
6
  import os
7
 
 
95
 
96
  - The text may have been obtained via OCR, which could result in some errors.
97
  - Disregard any text enclosed in <>. They separate different parts of the text.
98
+ - If the task type is empty, try to identify the task type from the question. If you cannot determine the task type, mention that the task type is unclear.
99
+ - If the question section is empty, try to identify the question in the task content.
100
  - If the specific question is not present in the task content, mention that the question does not exist in the task response.
101
 
 
102
  Task type: {task_type}
103
 
104
  Task number: {task_number}
 
114
  # Define the prompt template
115
  prompt = PromptTemplate(input_variables=['task_type', 'task_number', 'question', 'content', 'description'], template=initial_prompt)
116
 
117
+ # Define the RunnableSequence
118
+ sequence = RunnableSequence([
119
+ prompt,
120
+ llm_model
121
+ ])
122
 
123
  def evaluate(task_type, task_number, question, image):
124
  # Process the image to extract text
 
128
  # Select the appropriate description based on user input
129
  description = descriptions.get((task_type, task_number), "")
130
 
131
+ # Run the sequence
132
+ result = sequence({
133
  'task_type': task_type,
134
  'task_number': task_number,
135
  'question': question,