Spaces:
Running
Running
File size: 11,609 Bytes
03f850e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
from open_webui.utils.task import prompt_template, prompt_variables_template
from open_webui.utils.misc import (
deep_update,
add_or_update_system_message,
)
from typing import Callable, Optional
import json
# inplace function: form_data is modified
def apply_model_system_prompt_to_body(
system: Optional[str], form_data: dict, metadata: Optional[dict] = None, user=None
) -> dict:
if not system:
return form_data
# Metadata (WebUI Usage)
if metadata:
variables = metadata.get("variables", {})
if variables:
system = prompt_variables_template(system, variables)
# Legacy (API Usage)
if user:
template_params = {
"user_name": user.name,
"user_location": user.info.get("location") if user.info else None,
}
else:
template_params = {}
system = prompt_template(system, **template_params)
form_data["messages"] = add_or_update_system_message(
system, form_data.get("messages", [])
)
return form_data
# inplace function: form_data is modified
def apply_model_params_to_body(
params: dict, form_data: dict, mappings: dict[str, Callable]
) -> dict:
if not params:
return form_data
for key, value in params.items():
if value is not None:
if key in mappings:
cast_func = mappings[key]
if isinstance(cast_func, Callable):
form_data[key] = cast_func(value)
else:
form_data[key] = value
return form_data
def remove_open_webui_params(params: dict) -> dict:
"""
Removes OpenWebUI specific parameters from the provided dictionary.
Args:
params (dict): The dictionary containing parameters.
Returns:
dict: The modified dictionary with OpenWebUI parameters removed.
"""
open_webui_params = {
"stream_response": bool,
"function_calling": str,
"system": str,
}
for key in list(params.keys()):
if key in open_webui_params:
del params[key]
return params
# inplace function: form_data is modified
def apply_model_params_to_body_openai(params: dict, form_data: dict) -> dict:
params = remove_open_webui_params(params)
custom_params = params.pop("custom_params", {})
if custom_params:
# Attempt to parse custom_params if they are strings
for key, value in custom_params.items():
if isinstance(value, str):
try:
# Attempt to parse the string as JSON
custom_params[key] = json.loads(value)
except json.JSONDecodeError:
# If it fails, keep the original string
pass
# If there are custom parameters, we need to apply them first
params = deep_update(params, custom_params)
mappings = {
"temperature": float,
"top_p": float,
"min_p": float,
"max_tokens": int,
"frequency_penalty": float,
"presence_penalty": float,
"reasoning_effort": str,
"seed": lambda x: x,
"stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x],
"logit_bias": lambda x: x,
"response_format": dict,
}
return apply_model_params_to_body(params, form_data, mappings)
def apply_model_params_to_body_ollama(params: dict, form_data: dict) -> dict:
params = remove_open_webui_params(params)
custom_params = params.pop("custom_params", {})
if custom_params:
# Attempt to parse custom_params if they are strings
for key, value in custom_params.items():
if isinstance(value, str):
try:
# Attempt to parse the string as JSON
custom_params[key] = json.loads(value)
except json.JSONDecodeError:
# If it fails, keep the original string
pass
# If there are custom parameters, we need to apply them first
params = deep_update(params, custom_params)
# Convert OpenAI parameter names to Ollama parameter names if needed.
name_differences = {
"max_tokens": "num_predict",
}
for key, value in name_differences.items():
if (param := params.get(key, None)) is not None:
# Copy the parameter to new name then delete it, to prevent Ollama warning of invalid option provided
params[value] = params[key]
del params[key]
# See https://github.com/ollama/ollama/blob/main/docs/api.md#request-8
mappings = {
"temperature": float,
"top_p": float,
"seed": lambda x: x,
"mirostat": int,
"mirostat_eta": float,
"mirostat_tau": float,
"num_ctx": int,
"num_batch": int,
"num_keep": int,
"num_predict": int,
"repeat_last_n": int,
"top_k": int,
"min_p": float,
"typical_p": float,
"repeat_penalty": float,
"presence_penalty": float,
"frequency_penalty": float,
"penalize_newline": bool,
"stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x],
"numa": bool,
"num_gpu": int,
"main_gpu": int,
"low_vram": bool,
"vocab_only": bool,
"use_mmap": bool,
"use_mlock": bool,
"num_thread": int,
}
# Extract keep_alive from options if it exists
if "options" in form_data and "keep_alive" in form_data["options"]:
form_data["keep_alive"] = form_data["options"]["keep_alive"]
del form_data["options"]["keep_alive"]
if "options" in form_data and "format" in form_data["options"]:
form_data["format"] = form_data["options"]["format"]
del form_data["options"]["format"]
return apply_model_params_to_body(params, form_data, mappings)
def convert_messages_openai_to_ollama(messages: list[dict]) -> list[dict]:
ollama_messages = []
for message in messages:
# Initialize the new message structure with the role
new_message = {"role": message["role"]}
content = message.get("content", [])
tool_calls = message.get("tool_calls", None)
tool_call_id = message.get("tool_call_id", None)
# Check if the content is a string (just a simple message)
if isinstance(content, str) and not tool_calls:
# If the content is a string, it's pure text
new_message["content"] = content
# If message is a tool call, add the tool call id to the message
if tool_call_id:
new_message["tool_call_id"] = tool_call_id
elif tool_calls:
# If tool calls are present, add them to the message
ollama_tool_calls = []
for tool_call in tool_calls:
ollama_tool_call = {
"index": tool_call.get("index", 0),
"id": tool_call.get("id", None),
"function": {
"name": tool_call.get("function", {}).get("name", ""),
"arguments": json.loads(
tool_call.get("function", {}).get("arguments", {})
),
},
}
ollama_tool_calls.append(ollama_tool_call)
new_message["tool_calls"] = ollama_tool_calls
# Put the content to empty string (Ollama requires an empty string for tool calls)
new_message["content"] = ""
else:
# Otherwise, assume the content is a list of dicts, e.g., text followed by an image URL
content_text = ""
images = []
# Iterate through the list of content items
for item in content:
# Check if it's a text type
if item.get("type") == "text":
content_text += item.get("text", "")
# Check if it's an image URL type
elif item.get("type") == "image_url":
img_url = item.get("image_url", {}).get("url", "")
if img_url:
# If the image url starts with data:, it's a base64 image and should be trimmed
if img_url.startswith("data:"):
img_url = img_url.split(",")[-1]
images.append(img_url)
# Add content text (if any)
if content_text:
new_message["content"] = content_text.strip()
# Add images (if any)
if images:
new_message["images"] = images
# Append the new formatted message to the result
ollama_messages.append(new_message)
return ollama_messages
def convert_payload_openai_to_ollama(openai_payload: dict) -> dict:
"""
Converts a payload formatted for OpenAI's API to be compatible with Ollama's API endpoint for chat completions.
Args:
openai_payload (dict): The payload originally designed for OpenAI API usage.
Returns:
dict: A modified payload compatible with the Ollama API.
"""
ollama_payload = {}
# Mapping basic model and message details
ollama_payload["model"] = openai_payload.get("model")
ollama_payload["messages"] = convert_messages_openai_to_ollama(
openai_payload.get("messages")
)
ollama_payload["stream"] = openai_payload.get("stream", False)
if "tools" in openai_payload:
ollama_payload["tools"] = openai_payload["tools"]
if "format" in openai_payload:
ollama_payload["format"] = openai_payload["format"]
# If there are advanced parameters in the payload, format them in Ollama's options field
if openai_payload.get("options"):
ollama_payload["options"] = openai_payload["options"]
ollama_options = openai_payload["options"]
# Re-Mapping OpenAI's `max_tokens` -> Ollama's `num_predict`
if "max_tokens" in ollama_options:
ollama_options["num_predict"] = ollama_options["max_tokens"]
del ollama_options[
"max_tokens"
] # To prevent Ollama warning of invalid option provided
# Ollama lacks a "system" prompt option. It has to be provided as a direct parameter, so we copy it down.
if "system" in ollama_options:
ollama_payload["system"] = ollama_options["system"]
del ollama_options[
"system"
] # To prevent Ollama warning of invalid option provided
# Extract keep_alive from options if it exists
if "keep_alive" in ollama_options:
ollama_payload["keep_alive"] = ollama_options["keep_alive"]
del ollama_options["keep_alive"]
# If there is the "stop" parameter in the openai_payload, remap it to the ollama_payload.options
if "stop" in openai_payload:
ollama_options = ollama_payload.get("options", {})
ollama_options["stop"] = openai_payload.get("stop")
ollama_payload["options"] = ollama_options
if "metadata" in openai_payload:
ollama_payload["metadata"] = openai_payload["metadata"]
if "response_format" in openai_payload:
response_format = openai_payload["response_format"]
format_type = response_format.get("type", None)
schema = response_format.get(format_type, None)
if schema:
format = schema.get("schema", None)
ollama_payload["format"] = format
return ollama_payload
|