Spaces:
Running
Running
File size: 6,080 Bytes
fb22f47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
from open_webui.utils.task import prompt_template
from open_webui.utils.misc import (
add_or_update_system_message,
)
from typing import Callable, Optional
# inplace function: form_data is modified
def apply_model_system_prompt_to_body(params: dict, form_data: dict, user) -> dict:
system = params.get("system", None)
if not system:
return form_data
if user:
template_params = {
"user_name": user.name,
"user_location": user.info.get("location") if user.info else None,
}
else:
template_params = {}
system = prompt_template(system, **template_params)
form_data["messages"] = add_or_update_system_message(
system, form_data.get("messages", [])
)
return form_data
# inplace function: form_data is modified
def apply_model_params_to_body(
params: dict, form_data: dict, mappings: dict[str, Callable]
) -> dict:
if not params:
return form_data
for key, cast_func in mappings.items():
if (value := params.get(key)) is not None:
form_data[key] = cast_func(value)
return form_data
# inplace function: form_data is modified
def apply_model_params_to_body_openai(params: dict, form_data: dict) -> dict:
mappings = {
"temperature": float,
"top_p": float,
"max_tokens": int,
"frequency_penalty": float,
"seed": lambda x: x,
"stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x],
}
return apply_model_params_to_body(params, form_data, mappings)
def apply_model_params_to_body_ollama(params: dict, form_data: dict) -> dict:
opts = [
"temperature",
"top_p",
"seed",
"mirostat",
"mirostat_eta",
"mirostat_tau",
"num_ctx",
"num_batch",
"num_keep",
"repeat_last_n",
"tfs_z",
"top_k",
"min_p",
"use_mmap",
"use_mlock",
"num_thread",
"num_gpu",
]
mappings = {i: lambda x: x for i in opts}
form_data = apply_model_params_to_body(params, form_data, mappings)
name_differences = {
"max_tokens": "num_predict",
"frequency_penalty": "repeat_penalty",
}
for key, value in name_differences.items():
if (param := params.get(key, None)) is not None:
form_data[value] = param
return form_data
def convert_messages_openai_to_ollama(messages: list[dict]) -> list[dict]:
ollama_messages = []
for message in messages:
# Initialize the new message structure with the role
new_message = {"role": message["role"]}
content = message.get("content", [])
# Check if the content is a string (just a simple message)
if isinstance(content, str):
# If the content is a string, it's pure text
new_message["content"] = content
else:
# Otherwise, assume the content is a list of dicts, e.g., text followed by an image URL
content_text = ""
images = []
# Iterate through the list of content items
for item in content:
# Check if it's a text type
if item.get("type") == "text":
content_text += item.get("text", "")
# Check if it's an image URL type
elif item.get("type") == "image_url":
img_url = item.get("image_url", {}).get("url", "")
if img_url:
# If the image url starts with data:, it's a base64 image and should be trimmed
if img_url.startswith("data:"):
img_url = img_url.split(",")[-1]
images.append(img_url)
# Add content text (if any)
if content_text:
new_message["content"] = content_text.strip()
# Add images (if any)
if images:
new_message["images"] = images
# Append the new formatted message to the result
ollama_messages.append(new_message)
return ollama_messages
def convert_payload_openai_to_ollama(openai_payload: dict) -> dict:
"""
Converts a payload formatted for OpenAI's API to be compatible with Ollama's API endpoint for chat completions.
Args:
openai_payload (dict): The payload originally designed for OpenAI API usage.
Returns:
dict: A modified payload compatible with the Ollama API.
"""
ollama_payload = {}
# Mapping basic model and message details
ollama_payload["model"] = openai_payload.get("model")
ollama_payload["messages"] = convert_messages_openai_to_ollama(
openai_payload.get("messages")
)
ollama_payload["stream"] = openai_payload.get("stream", False)
# If there are advanced parameters in the payload, format them in Ollama's options field
ollama_options = {}
# Handle parameters which map directly
for param in ["temperature", "top_p", "seed"]:
if param in openai_payload:
ollama_options[param] = openai_payload[param]
# Mapping OpenAI's `max_tokens` -> Ollama's `num_predict`
if "max_completion_tokens" in openai_payload:
ollama_options["num_predict"] = openai_payload["max_completion_tokens"]
elif "max_tokens" in openai_payload:
ollama_options["num_predict"] = openai_payload["max_tokens"]
# Handle frequency / presence_penalty, which needs renaming and checking
if "frequency_penalty" in openai_payload:
ollama_options["repeat_penalty"] = openai_payload["frequency_penalty"]
if "presence_penalty" in openai_payload and "penalty" not in ollama_options:
# We are assuming presence penalty uses a similar concept in Ollama, which needs custom handling if exists.
ollama_options["new_topic_penalty"] = openai_payload["presence_penalty"]
# Add options to payload if any have been set
if ollama_options:
ollama_payload["options"] = ollama_options
return ollama_payload
|