File size: 6,080 Bytes
fb22f47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from open_webui.utils.task import prompt_template
from open_webui.utils.misc import (
    add_or_update_system_message,
)

from typing import Callable, Optional


# inplace function: form_data is modified
def apply_model_system_prompt_to_body(params: dict, form_data: dict, user) -> dict:
    system = params.get("system", None)
    if not system:
        return form_data

    if user:
        template_params = {
            "user_name": user.name,
            "user_location": user.info.get("location") if user.info else None,
        }
    else:
        template_params = {}
    system = prompt_template(system, **template_params)
    form_data["messages"] = add_or_update_system_message(
        system, form_data.get("messages", [])
    )
    return form_data


# inplace function: form_data is modified
def apply_model_params_to_body(
    params: dict, form_data: dict, mappings: dict[str, Callable]
) -> dict:
    if not params:
        return form_data

    for key, cast_func in mappings.items():
        if (value := params.get(key)) is not None:
            form_data[key] = cast_func(value)

    return form_data


# inplace function: form_data is modified
def apply_model_params_to_body_openai(params: dict, form_data: dict) -> dict:
    mappings = {
        "temperature": float,
        "top_p": float,
        "max_tokens": int,
        "frequency_penalty": float,
        "seed": lambda x: x,
        "stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x],
    }
    return apply_model_params_to_body(params, form_data, mappings)


def apply_model_params_to_body_ollama(params: dict, form_data: dict) -> dict:
    opts = [
        "temperature",
        "top_p",
        "seed",
        "mirostat",
        "mirostat_eta",
        "mirostat_tau",
        "num_ctx",
        "num_batch",
        "num_keep",
        "repeat_last_n",
        "tfs_z",
        "top_k",
        "min_p",
        "use_mmap",
        "use_mlock",
        "num_thread",
        "num_gpu",
    ]
    mappings = {i: lambda x: x for i in opts}
    form_data = apply_model_params_to_body(params, form_data, mappings)

    name_differences = {
        "max_tokens": "num_predict",
        "frequency_penalty": "repeat_penalty",
    }

    for key, value in name_differences.items():
        if (param := params.get(key, None)) is not None:
            form_data[value] = param

    return form_data


def convert_messages_openai_to_ollama(messages: list[dict]) -> list[dict]:
    ollama_messages = []

    for message in messages:
        # Initialize the new message structure with the role
        new_message = {"role": message["role"]}

        content = message.get("content", [])

        # Check if the content is a string (just a simple message)
        if isinstance(content, str):
            # If the content is a string, it's pure text
            new_message["content"] = content
        else:
            # Otherwise, assume the content is a list of dicts, e.g., text followed by an image URL
            content_text = ""
            images = []

            # Iterate through the list of content items
            for item in content:
                # Check if it's a text type
                if item.get("type") == "text":
                    content_text += item.get("text", "")

                # Check if it's an image URL type
                elif item.get("type") == "image_url":
                    img_url = item.get("image_url", {}).get("url", "")
                    if img_url:
                        # If the image url starts with data:, it's a base64 image and should be trimmed
                        if img_url.startswith("data:"):
                            img_url = img_url.split(",")[-1]
                        images.append(img_url)

            # Add content text (if any)
            if content_text:
                new_message["content"] = content_text.strip()

            # Add images (if any)
            if images:
                new_message["images"] = images

        # Append the new formatted message to the result
        ollama_messages.append(new_message)

    return ollama_messages


def convert_payload_openai_to_ollama(openai_payload: dict) -> dict:
    """
    Converts a payload formatted for OpenAI's API to be compatible with Ollama's API endpoint for chat completions.

    Args:
        openai_payload (dict): The payload originally designed for OpenAI API usage.

    Returns:
        dict: A modified payload compatible with the Ollama API.
    """
    ollama_payload = {}

    # Mapping basic model and message details
    ollama_payload["model"] = openai_payload.get("model")
    ollama_payload["messages"] = convert_messages_openai_to_ollama(
        openai_payload.get("messages")
    )
    ollama_payload["stream"] = openai_payload.get("stream", False)

    # If there are advanced parameters in the payload, format them in Ollama's options field
    ollama_options = {}

    # Handle parameters which map directly
    for param in ["temperature", "top_p", "seed"]:
        if param in openai_payload:
            ollama_options[param] = openai_payload[param]

    # Mapping OpenAI's `max_tokens` -> Ollama's `num_predict`
    if "max_completion_tokens" in openai_payload:
        ollama_options["num_predict"] = openai_payload["max_completion_tokens"]
    elif "max_tokens" in openai_payload:
        ollama_options["num_predict"] = openai_payload["max_tokens"]

    # Handle frequency / presence_penalty, which needs renaming and checking
    if "frequency_penalty" in openai_payload:
        ollama_options["repeat_penalty"] = openai_payload["frequency_penalty"]

    if "presence_penalty" in openai_payload and "penalty" not in ollama_options:
        # We are assuming presence penalty uses a similar concept in Ollama, which needs custom handling if exists.
        ollama_options["new_topic_penalty"] = openai_payload["presence_penalty"]

    # Add options to payload if any have been set
    if ollama_options:
        ollama_payload["options"] = ollama_options

    return ollama_payload