Spaces:
Build error
Build error
File size: 10,204 Bytes
19ba78c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
from elasticsearch import Elasticsearch, BadRequestError
from typing import Optional
import ssl
from elasticsearch.helpers import bulk, scan
from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult
from open_webui.config import (
ELASTICSEARCH_URL,
ELASTICSEARCH_CA_CERTS,
ELASTICSEARCH_API_KEY,
ELASTICSEARCH_USERNAME,
ELASTICSEARCH_PASSWORD,
ELASTICSEARCH_CLOUD_ID,
ELASTICSEARCH_INDEX_PREFIX,
SSL_ASSERT_FINGERPRINT,
)
class ElasticsearchClient:
"""
Important:
in order to reduce the number of indexes and since the embedding vector length is fixed, we avoid creating
an index for each file but store it as a text field, while seperating to different index
baesd on the embedding length.
"""
def __init__(self):
self.index_prefix = ELASTICSEARCH_INDEX_PREFIX
self.client = Elasticsearch(
hosts=[ELASTICSEARCH_URL],
ca_certs=ELASTICSEARCH_CA_CERTS,
api_key=ELASTICSEARCH_API_KEY,
cloud_id=ELASTICSEARCH_CLOUD_ID,
basic_auth=(
(ELASTICSEARCH_USERNAME, ELASTICSEARCH_PASSWORD)
if ELASTICSEARCH_USERNAME and ELASTICSEARCH_PASSWORD
else None
),
ssl_assert_fingerprint=SSL_ASSERT_FINGERPRINT,
)
# Status: works
def _get_index_name(self, dimension: int) -> str:
return f"{self.index_prefix}_d{str(dimension)}"
# Status: works
def _scan_result_to_get_result(self, result) -> GetResult:
if not result:
return None
ids = []
documents = []
metadatas = []
for hit in result:
ids.append(hit["_id"])
documents.append(hit["_source"].get("text"))
metadatas.append(hit["_source"].get("metadata"))
return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas])
# Status: works
def _result_to_get_result(self, result) -> GetResult:
if not result["hits"]["hits"]:
return None
ids = []
documents = []
metadatas = []
for hit in result["hits"]["hits"]:
ids.append(hit["_id"])
documents.append(hit["_source"].get("text"))
metadatas.append(hit["_source"].get("metadata"))
return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas])
# Status: works
def _result_to_search_result(self, result) -> SearchResult:
ids = []
distances = []
documents = []
metadatas = []
for hit in result["hits"]["hits"]:
ids.append(hit["_id"])
distances.append(hit["_score"])
documents.append(hit["_source"].get("text"))
metadatas.append(hit["_source"].get("metadata"))
return SearchResult(
ids=[ids],
distances=[distances],
documents=[documents],
metadatas=[metadatas],
)
# Status: works
def _create_index(self, dimension: int):
body = {
"mappings": {
"dynamic_templates": [
{
"strings": {
"match_mapping_type": "string",
"mapping": {"type": "keyword"},
}
}
],
"properties": {
"collection": {"type": "keyword"},
"id": {"type": "keyword"},
"vector": {
"type": "dense_vector",
"dims": dimension, # Adjust based on your vector dimensions
"index": True,
"similarity": "cosine",
},
"text": {"type": "text"},
"metadata": {"type": "object"},
},
}
}
self.client.indices.create(index=self._get_index_name(dimension), body=body)
# Status: works
def _create_batches(self, items: list[VectorItem], batch_size=100):
for i in range(0, len(items), batch_size):
yield items[i : min(i + batch_size, len(items))]
# Status: works
def has_collection(self, collection_name) -> bool:
query_body = {"query": {"bool": {"filter": []}}}
query_body["query"]["bool"]["filter"].append(
{"term": {"collection": collection_name}}
)
try:
result = self.client.count(index=f"{self.index_prefix}*", body=query_body)
return result.body["count"] > 0
except Exception as e:
return None
def delete_collection(self, collection_name: str):
query = {"query": {"term": {"collection": collection_name}}}
self.client.delete_by_query(index=f"{self.index_prefix}*", body=query)
# Status: works
def search(
self, collection_name: str, vectors: list[list[float]], limit: int
) -> Optional[SearchResult]:
query = {
"size": limit,
"_source": ["text", "metadata"],
"query": {
"script_score": {
"query": {
"bool": {"filter": [{"term": {"collection": collection_name}}]}
},
"script": {
"source": "cosineSimilarity(params.vector, 'vector') + 1.0",
"params": {
"vector": vectors[0]
}, # Assuming single query vector
},
}
},
}
result = self.client.search(
index=self._get_index_name(len(vectors[0])), body=query
)
return self._result_to_search_result(result)
# Status: only tested halfwat
def query(
self, collection_name: str, filter: dict, limit: Optional[int] = None
) -> Optional[GetResult]:
if not self.has_collection(collection_name):
return None
query_body = {
"query": {"bool": {"filter": []}},
"_source": ["text", "metadata"],
}
for field, value in filter.items():
query_body["query"]["bool"]["filter"].append({"term": {field: value}})
query_body["query"]["bool"]["filter"].append(
{"term": {"collection": collection_name}}
)
size = limit if limit else 10
try:
result = self.client.search(
index=f"{self.index_prefix}*",
body=query_body,
size=size,
)
return self._result_to_get_result(result)
except Exception as e:
return None
# Status: works
def _has_index(self, dimension: int):
return self.client.indices.exists(
index=self._get_index_name(dimension=dimension)
)
def get_or_create_index(self, dimension: int):
if not self._has_index(dimension=dimension):
self._create_index(dimension=dimension)
# Status: works
def get(self, collection_name: str) -> Optional[GetResult]:
# Get all the items in the collection.
query = {
"query": {"bool": {"filter": [{"term": {"collection": collection_name}}]}},
"_source": ["text", "metadata"],
}
results = list(scan(self.client, index=f"{self.index_prefix}*", query=query))
return self._scan_result_to_get_result(results)
# Status: works
def insert(self, collection_name: str, items: list[VectorItem]):
if not self._has_index(dimension=len(items[0]["vector"])):
self._create_index(dimension=len(items[0]["vector"]))
for batch in self._create_batches(items):
actions = [
{
"_index": self._get_index_name(dimension=len(items[0]["vector"])),
"_id": item["id"],
"_source": {
"collection": collection_name,
"vector": item["vector"],
"text": item["text"],
"metadata": item["metadata"],
},
}
for item in batch
]
bulk(self.client, actions)
# Upsert documents using the update API with doc_as_upsert=True.
def upsert(self, collection_name: str, items: list[VectorItem]):
if not self._has_index(dimension=len(items[0]["vector"])):
self._create_index(dimension=len(items[0]["vector"]))
for batch in self._create_batches(items):
actions = [
{
"_op_type": "update",
"_index": self._get_index_name(dimension=len(item["vector"])),
"_id": item["id"],
"doc": {
"collection": collection_name,
"vector": item["vector"],
"text": item["text"],
"metadata": item["metadata"],
},
"doc_as_upsert": True,
}
for item in batch
]
bulk(self.client, actions)
# Delete specific documents from a collection by filtering on both collection and document IDs.
def delete(
self,
collection_name: str,
ids: Optional[list[str]] = None,
filter: Optional[dict] = None,
):
query = {
"query": {"bool": {"filter": [{"term": {"collection": collection_name}}]}}
}
# logic based on chromaDB
if ids:
query["query"]["bool"]["filter"].append({"terms": {"_id": ids}})
elif filter:
for field, value in filter.items():
query["query"]["bool"]["filter"].append(
{"term": {f"metadata.{field}": value}}
)
self.client.delete_by_query(index=f"{self.index_prefix}*", body=query)
def reset(self):
indices = self.client.indices.get(index=f"{self.index_prefix}*")
for index in indices:
self.client.indices.delete(index=index)
|