File size: 10,204 Bytes
19ba78c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from elasticsearch import Elasticsearch, BadRequestError
from typing import Optional
import ssl
from elasticsearch.helpers import bulk, scan
from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult
from open_webui.config import (
    ELASTICSEARCH_URL,
    ELASTICSEARCH_CA_CERTS,
    ELASTICSEARCH_API_KEY,
    ELASTICSEARCH_USERNAME,
    ELASTICSEARCH_PASSWORD,
    ELASTICSEARCH_CLOUD_ID,
    ELASTICSEARCH_INDEX_PREFIX,
    SSL_ASSERT_FINGERPRINT,
)


class ElasticsearchClient:
    """
    Important:
    in order to reduce the number of indexes and since the embedding vector length is fixed, we avoid creating
    an index for each file but store it as a text field, while seperating to different index
    baesd on the embedding length.
    """

    def __init__(self):
        self.index_prefix = ELASTICSEARCH_INDEX_PREFIX
        self.client = Elasticsearch(
            hosts=[ELASTICSEARCH_URL],
            ca_certs=ELASTICSEARCH_CA_CERTS,
            api_key=ELASTICSEARCH_API_KEY,
            cloud_id=ELASTICSEARCH_CLOUD_ID,
            basic_auth=(
                (ELASTICSEARCH_USERNAME, ELASTICSEARCH_PASSWORD)
                if ELASTICSEARCH_USERNAME and ELASTICSEARCH_PASSWORD
                else None
            ),
            ssl_assert_fingerprint=SSL_ASSERT_FINGERPRINT,
        )

    # Status: works
    def _get_index_name(self, dimension: int) -> str:
        return f"{self.index_prefix}_d{str(dimension)}"

    # Status: works
    def _scan_result_to_get_result(self, result) -> GetResult:
        if not result:
            return None
        ids = []
        documents = []
        metadatas = []

        for hit in result:
            ids.append(hit["_id"])
            documents.append(hit["_source"].get("text"))
            metadatas.append(hit["_source"].get("metadata"))

        return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas])

    # Status: works
    def _result_to_get_result(self, result) -> GetResult:
        if not result["hits"]["hits"]:
            return None
        ids = []
        documents = []
        metadatas = []

        for hit in result["hits"]["hits"]:
            ids.append(hit["_id"])
            documents.append(hit["_source"].get("text"))
            metadatas.append(hit["_source"].get("metadata"))

        return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas])

    # Status: works
    def _result_to_search_result(self, result) -> SearchResult:
        ids = []
        distances = []
        documents = []
        metadatas = []

        for hit in result["hits"]["hits"]:
            ids.append(hit["_id"])
            distances.append(hit["_score"])
            documents.append(hit["_source"].get("text"))
            metadatas.append(hit["_source"].get("metadata"))

        return SearchResult(
            ids=[ids],
            distances=[distances],
            documents=[documents],
            metadatas=[metadatas],
        )

    # Status: works
    def _create_index(self, dimension: int):
        body = {
            "mappings": {
                "dynamic_templates": [
                    {
                        "strings": {
                            "match_mapping_type": "string",
                            "mapping": {"type": "keyword"},
                        }
                    }
                ],
                "properties": {
                    "collection": {"type": "keyword"},
                    "id": {"type": "keyword"},
                    "vector": {
                        "type": "dense_vector",
                        "dims": dimension,  # Adjust based on your vector dimensions
                        "index": True,
                        "similarity": "cosine",
                    },
                    "text": {"type": "text"},
                    "metadata": {"type": "object"},
                },
            }
        }
        self.client.indices.create(index=self._get_index_name(dimension), body=body)

    # Status: works

    def _create_batches(self, items: list[VectorItem], batch_size=100):
        for i in range(0, len(items), batch_size):
            yield items[i : min(i + batch_size, len(items))]

    # Status: works
    def has_collection(self, collection_name) -> bool:
        query_body = {"query": {"bool": {"filter": []}}}
        query_body["query"]["bool"]["filter"].append(
            {"term": {"collection": collection_name}}
        )

        try:
            result = self.client.count(index=f"{self.index_prefix}*", body=query_body)

            return result.body["count"] > 0
        except Exception as e:
            return None

    def delete_collection(self, collection_name: str):
        query = {"query": {"term": {"collection": collection_name}}}
        self.client.delete_by_query(index=f"{self.index_prefix}*", body=query)

    # Status: works
    def search(
        self, collection_name: str, vectors: list[list[float]], limit: int
    ) -> Optional[SearchResult]:
        query = {
            "size": limit,
            "_source": ["text", "metadata"],
            "query": {
                "script_score": {
                    "query": {
                        "bool": {"filter": [{"term": {"collection": collection_name}}]}
                    },
                    "script": {
                        "source": "cosineSimilarity(params.vector, 'vector') + 1.0",
                        "params": {
                            "vector": vectors[0]
                        },  # Assuming single query vector
                    },
                }
            },
        }

        result = self.client.search(
            index=self._get_index_name(len(vectors[0])), body=query
        )

        return self._result_to_search_result(result)

    # Status: only tested halfwat
    def query(
        self, collection_name: str, filter: dict, limit: Optional[int] = None
    ) -> Optional[GetResult]:
        if not self.has_collection(collection_name):
            return None

        query_body = {
            "query": {"bool": {"filter": []}},
            "_source": ["text", "metadata"],
        }

        for field, value in filter.items():
            query_body["query"]["bool"]["filter"].append({"term": {field: value}})
        query_body["query"]["bool"]["filter"].append(
            {"term": {"collection": collection_name}}
        )
        size = limit if limit else 10

        try:
            result = self.client.search(
                index=f"{self.index_prefix}*",
                body=query_body,
                size=size,
            )

            return self._result_to_get_result(result)

        except Exception as e:
            return None

    # Status: works
    def _has_index(self, dimension: int):
        return self.client.indices.exists(
            index=self._get_index_name(dimension=dimension)
        )

    def get_or_create_index(self, dimension: int):
        if not self._has_index(dimension=dimension):
            self._create_index(dimension=dimension)

    # Status: works
    def get(self, collection_name: str) -> Optional[GetResult]:
        # Get all the items in the collection.
        query = {
            "query": {"bool": {"filter": [{"term": {"collection": collection_name}}]}},
            "_source": ["text", "metadata"],
        }
        results = list(scan(self.client, index=f"{self.index_prefix}*", query=query))

        return self._scan_result_to_get_result(results)

    # Status: works
    def insert(self, collection_name: str, items: list[VectorItem]):
        if not self._has_index(dimension=len(items[0]["vector"])):
            self._create_index(dimension=len(items[0]["vector"]))

        for batch in self._create_batches(items):
            actions = [
                {
                    "_index": self._get_index_name(dimension=len(items[0]["vector"])),
                    "_id": item["id"],
                    "_source": {
                        "collection": collection_name,
                        "vector": item["vector"],
                        "text": item["text"],
                        "metadata": item["metadata"],
                    },
                }
                for item in batch
            ]
            bulk(self.client, actions)

    # Upsert documents using the update API with doc_as_upsert=True.
    def upsert(self, collection_name: str, items: list[VectorItem]):
        if not self._has_index(dimension=len(items[0]["vector"])):
            self._create_index(dimension=len(items[0]["vector"]))
        for batch in self._create_batches(items):
            actions = [
                {
                    "_op_type": "update",
                    "_index": self._get_index_name(dimension=len(item["vector"])),
                    "_id": item["id"],
                    "doc": {
                        "collection": collection_name,
                        "vector": item["vector"],
                        "text": item["text"],
                        "metadata": item["metadata"],
                    },
                    "doc_as_upsert": True,
                }
                for item in batch
            ]
            bulk(self.client, actions)

    # Delete specific documents from a collection by filtering on both collection and document IDs.
    def delete(
        self,
        collection_name: str,
        ids: Optional[list[str]] = None,
        filter: Optional[dict] = None,
    ):

        query = {
            "query": {"bool": {"filter": [{"term": {"collection": collection_name}}]}}
        }
        # logic based on chromaDB
        if ids:
            query["query"]["bool"]["filter"].append({"terms": {"_id": ids}})
        elif filter:
            for field, value in filter.items():
                query["query"]["bool"]["filter"].append(
                    {"term": {f"metadata.{field}": value}}
                )

        self.client.delete_by_query(index=f"{self.index_prefix}*", body=query)

    def reset(self):
        indices = self.client.indices.get(index=f"{self.index_prefix}*")
        for index in indices:
            self.client.indices.delete(index=index)