Spaces:
Build error
Build error
File size: 8,848 Bytes
19ba78c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
from opensearchpy import OpenSearch
from opensearchpy.helpers import bulk
from typing import Optional
from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult
from open_webui.config import (
OPENSEARCH_URI,
OPENSEARCH_SSL,
OPENSEARCH_CERT_VERIFY,
OPENSEARCH_USERNAME,
OPENSEARCH_PASSWORD,
)
class OpenSearchClient:
def __init__(self):
self.index_prefix = "open_webui"
self.client = OpenSearch(
hosts=[OPENSEARCH_URI],
use_ssl=OPENSEARCH_SSL,
verify_certs=OPENSEARCH_CERT_VERIFY,
http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD),
)
def _get_index_name(self, collection_name: str) -> str:
return f"{self.index_prefix}_{collection_name}"
def _result_to_get_result(self, result) -> GetResult:
if not result["hits"]["hits"]:
return None
ids = []
documents = []
metadatas = []
for hit in result["hits"]["hits"]:
ids.append(hit["_id"])
documents.append(hit["_source"].get("text"))
metadatas.append(hit["_source"].get("metadata"))
return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas])
def _result_to_search_result(self, result) -> SearchResult:
if not result["hits"]["hits"]:
return None
ids = []
distances = []
documents = []
metadatas = []
for hit in result["hits"]["hits"]:
ids.append(hit["_id"])
distances.append(hit["_score"])
documents.append(hit["_source"].get("text"))
metadatas.append(hit["_source"].get("metadata"))
return SearchResult(
ids=[ids],
distances=[distances],
documents=[documents],
metadatas=[metadatas],
)
def _create_index(self, collection_name: str, dimension: int):
body = {
"settings": {"index": {"knn": True}},
"mappings": {
"properties": {
"id": {"type": "keyword"},
"vector": {
"type": "knn_vector",
"dimension": dimension, # Adjust based on your vector dimensions
"index": True,
"similarity": "faiss",
"method": {
"name": "hnsw",
"space_type": "innerproduct", # Use inner product to approximate cosine similarity
"engine": "faiss",
"parameters": {
"ef_construction": 128,
"m": 16,
},
},
},
"text": {"type": "text"},
"metadata": {"type": "object"},
}
},
}
self.client.indices.create(
index=self._get_index_name(collection_name), body=body
)
def _create_batches(self, items: list[VectorItem], batch_size=100):
for i in range(0, len(items), batch_size):
yield items[i : i + batch_size]
def has_collection(self, collection_name: str) -> bool:
# has_collection here means has index.
# We are simply adapting to the norms of the other DBs.
return self.client.indices.exists(index=self._get_index_name(collection_name))
def delete_collection(self, collection_name: str):
# delete_collection here means delete index.
# We are simply adapting to the norms of the other DBs.
self.client.indices.delete(index=self._get_index_name(collection_name))
def search(
self, collection_name: str, vectors: list[list[float | int]], limit: int
) -> Optional[SearchResult]:
try:
if not self.has_collection(collection_name):
return None
query = {
"size": limit,
"_source": ["text", "metadata"],
"query": {
"script_score": {
"query": {"match_all": {}},
"script": {
"source": "(cosineSimilarity(params.query_value, doc[params.field]) + 1.0) / 2.0",
"params": {
"field": "vector",
"query_value": vectors[0],
}, # Assuming single query vector
},
}
},
}
result = self.client.search(
index=self._get_index_name(collection_name), body=query
)
return self._result_to_search_result(result)
except Exception as e:
return None
def query(
self, collection_name: str, filter: dict, limit: Optional[int] = None
) -> Optional[GetResult]:
if not self.has_collection(collection_name):
return None
query_body = {
"query": {"bool": {"filter": []}},
"_source": ["text", "metadata"],
}
for field, value in filter.items():
query_body["query"]["bool"]["filter"].append(
{"match": {"metadata." + str(field): value}}
)
size = limit if limit else 10
try:
result = self.client.search(
index=self._get_index_name(collection_name),
body=query_body,
size=size,
)
return self._result_to_get_result(result)
except Exception as e:
return None
def _create_index_if_not_exists(self, collection_name: str, dimension: int):
if not self.has_collection(collection_name):
self._create_index(collection_name, dimension)
def get(self, collection_name: str) -> Optional[GetResult]:
query = {"query": {"match_all": {}}, "_source": ["text", "metadata"]}
result = self.client.search(
index=self._get_index_name(collection_name), body=query
)
return self._result_to_get_result(result)
def insert(self, collection_name: str, items: list[VectorItem]):
self._create_index_if_not_exists(
collection_name=collection_name, dimension=len(items[0]["vector"])
)
for batch in self._create_batches(items):
actions = [
{
"_op_type": "index",
"_index": self._get_index_name(collection_name),
"_id": item["id"],
"_source": {
"vector": item["vector"],
"text": item["text"],
"metadata": item["metadata"],
},
}
for item in batch
]
bulk(self.client, actions)
def upsert(self, collection_name: str, items: list[VectorItem]):
self._create_index_if_not_exists(
collection_name=collection_name, dimension=len(items[0]["vector"])
)
for batch in self._create_batches(items):
actions = [
{
"_op_type": "update",
"_index": self._get_index_name(collection_name),
"_id": item["id"],
"doc": {
"vector": item["vector"],
"text": item["text"],
"metadata": item["metadata"],
},
"doc_as_upsert": True,
}
for item in batch
]
bulk(self.client, actions)
def delete(
self,
collection_name: str,
ids: Optional[list[str]] = None,
filter: Optional[dict] = None,
):
if ids:
actions = [
{
"_op_type": "delete",
"_index": self._get_index_name(collection_name),
"_id": id,
}
for id in ids
]
bulk(self.client, actions)
elif filter:
query_body = {
"query": {"bool": {"filter": []}},
}
for field, value in filter.items():
query_body["query"]["bool"]["filter"].append(
{"match": {"metadata." + str(field): value}}
)
self.client.delete_by_query(
index=self._get_index_name(collection_name), body=query_body
)
def reset(self):
indices = self.client.indices.get(index=f"{self.index_prefix}_*")
for index in indices:
self.client.indices.delete(index=index)
|