File size: 8,273 Bytes
d889050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69698e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d889050
 
69698e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d889050
69698e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d889050
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import gradio as gr
import os, gc, copy, torch
from datetime import datetime
from huggingface_hub import hf_hub_download
from transformers import CLIPVisionModel
import torch.nn as nn
import torch.nn.functional as F

ctx_limit = 3500
title = "rwkv1b5-vitl336p14-577token_mix665k_rwkv"

os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster)

from rwkv.model import RWKV
model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=f"{title}.pth")
model = RWKV(model=model_path, strategy='cpu fp32')
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")


class VisualRWKV(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.args = args
        self.vit = CLIPVisionModel.from_pretrained(args.vision_tower_name)
        self.proj = nn.Linear(self.vit.config.hidden_size, args.n_embd, bias=False)

    def encode_images(self, images):
        B, N, C, H, W = images.shape
        images = images.view(B*N, C, H, W)
        image_features = self.vit(images).last_hidden_state
        L, D = image_features.shape[1], image_features.shape[2]
        # rerange [B*N, L, D] -> [B, N, L, D]
        image_features = image_features.view(B, N, L, D)[:, 0, :, :]
        image_features = self.grid_pooling(image_features)
        return self.proj(image_features)
    
    def grid_pooling(self, image_features):
        if self.args.grid_size == -1: # no grid pooling
            return image_features
        if self.args.grid_size == 0: # take cls token
            return image_features[:, 0:1, :]
        if self.args.grid_size == 1: # global avg pooling
            return image_features.mean(dim=1, keepdim=True)
        cls_features = image_features[:, 0:1, :]
        image_features = image_features[:, 1:, :] #drop cls token
        B, L, D = image_features.shape
        H_or_W = int(L**0.5)
        image_features = image_features.view(B, H_or_W, H_or_W, D)
        grid_stride = H_or_W // self.args.grid_size
        image_features = F.avg_pool2d(image_features.permute(0, 3, 1, 2), 
                                      padding=0,
                                      kernel_size=grid_stride, 
                                      stride=grid_stride)
        image_features = image_features.permute(0, 2, 3, 1).view(B, -1, D)
        return torch.cat((cls_features, image_features), dim=1)


##########################################################################


def generate_prompt(instruction, input=""):
    instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
    input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
    if input:
        return f"""Instruction: {instruction}

Input: {input}

Response:"""
    else:
        return f"""User: hi

Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.

User: {instruction}

Assistant:"""

def evaluate(
    ctx,
    token_count=200,
    temperature=1.0,
    top_p=0.7,
    presencePenalty = 0.1,
    countPenalty = 0.1,
):
    args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
                     alpha_frequency = countPenalty,
                     alpha_presence = presencePenalty,
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [0]) # stop generation whenever you see any token here
    ctx = ctx.strip()
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    state = None
    for i in range(int(token_count)):
        out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= 0.996        
        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1
        
        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1

    del out
    del state
    gc.collect()
    yield out_str.strip()

import gradio as gr
import os, gc
from datetime import datetime
from huggingface_hub import hf_hub_download

ctx_limit = 3500
title = "rwkv1b5-vitl336p14-577token_mix665k_rwkv"

os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster)

from rwkv.model import RWKV
model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=f"{title}.pth")
model = RWKV(model=model_path, strategy='cpu fp32')
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")

##########################################################################
from model import VisualEncoder, EmbeddingMixer, VisualEncoderConfig
emb_mixer = EmbeddingMixer(model.w["emb.weight"], num_image_embeddings=4096)
config = VisualEncoderConfig(n_embd=model.args.n_embd, 
                             vision_tower_name='openai/clip-vit-large-patch14-336', 
                             grid_size=-1)
visual_encoder = VisualEncoder(config)
##########################################################################
def generate_prompt(instruction, input=""):
    instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
    input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
    if input:
        return f"""Instruction: {instruction}

Input: {input}

Response:"""
    else:
        return f"""User: hi

Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.

User: {instruction}

Assistant:"""

def evaluate(
    ctx,
    token_count=200,
    temperature=1.0,
    top_p=0.7,
    presencePenalty = 0.1,
    countPenalty = 0.1,
):
    args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
                     alpha_frequency = countPenalty,
                     alpha_presence = presencePenalty,
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [0]) # stop generation whenever you see any token here
    ctx = ctx.strip()
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    state = None
    for i in range(int(token_count)):
        out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= 0.996        
        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1
        
        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1

    del out
    del state
    gc.collect()
    yield out_str.strip()


##########################################################################
examples = [
    [
        "./extreme_ironing.jpg",
        "What is unusual about this image?",
    ],
    [
        "./waterview.jpg",
        "What are the things I should be cautious about when I visit here?",
    ]
]
def test(image, question):
    return question
demo = gr.Interface(fn=test, 
                    inputs=["image", "text"], 
                    outputs="text", 
                    examples=examples, 
                    title=title, 
                    description="VisualRWKV-v5.0")

demo.queue(concurrency_count=1, max_size=10)
demo.launch(share=False)