Spaces:
Sleeping
Sleeping
File size: 8,677 Bytes
8da3930 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
#include <cuda_fp16.h>
#define MIN_VALUE (-1e38)
typedef at::Half fp16;
__half *cast(fp16 *ptr) {
return reinterpret_cast<__half *>(ptr);
}
template <typename F>
__global__ void kernel_wkv_forward(const int B, const int T, const int C,
const float *__restrict__ const _w, const float *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
F *__restrict__ const _y, float *__restrict__ const _aa, float *__restrict__ const _bb, float *__restrict__ const _pp) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
const int _state_offset = _b * C + _c;
float u = _u[_c];
float w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
F *__restrict__ const y = _y + _offset;
float aa = _aa[_state_offset];
float bb = _bb[_state_offset];
float pp = _pp[_state_offset];
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
y[ii] = F((e1 * aa + e2 * vv) / (e1 * bb + e2));
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
_aa[_state_offset] = aa;
_bb[_state_offset] = bb;
_pp[_state_offset] = pp;
}
template <typename F>
void cuda_wkv_forward(int B, int T, int C, float *w, float *u, F *k, F *v, F *y, float *aa, float *bb, float *pp) {
dim3 threadsPerBlock( min(C, 32) );
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_wkv_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, aa, bb, pp);
}
template void cuda_wkv_forward<fp16>(
int B, int T, int C,
float *w, float *u, fp16 *k, fp16 *v, fp16 *y,
float *aa, float *bb, float *pp);
template void cuda_wkv_forward<float>(
int B, int T, int C,
float *w, float *u, float *k, float *v, float *y,
float *aa, float *bb, float *pp);
__global__ void kernel_mm_seq_fp32i8(
const int B, const int N, const int M,
const float *__restrict__ const x, const int x_stride,
const uint8_t *__restrict__ const w, const int w_stride,
const float *__restrict__ const mx,
const float *__restrict__ const rx,
const float *__restrict__ const my,
const float *__restrict__ const ry,
float *__restrict__ const y, const int y_stride) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int k = blockIdx.y * blockDim.y + threadIdx.y;
if (i < B && k < M) {
float y_local = 0;
for (int j = 0; j < N; ++j) {
y_local += x[i * x_stride + j] * (
(float(w[j * w_stride + k]) + 0.5f)
* rx[k] * ry[j] + mx[k] + my[j]
);
}
y[i * y_stride + k] = y_local;
}
}
template <typename F>
void cuda_mm8_seq(int B, int N, int M,
F *x, int x_stride,
uint8_t *w, int w_stride,
F *mx, F *rx,
F *my, F *ry,
F *y, int y_stride);
template <>
void cuda_mm8_seq<float>(int B, int N, int M,
float *x, int x_stride,
uint8_t *w, int w_stride,
float *mx, float *rx,
float *my, float *ry,
float *y, int y_stride) {
dim3 blockSize(1, 128);
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_seq_fp32i8<<<gridSize, blockSize>>>(
B, N, M, x, x_stride, w, w_stride,
mx, rx, my, ry, y, y_stride);
}
__global__ void kernel_mm_seq_fp16i8(
const int B, const int N, const int M,
const __half *__restrict__ const x, const int x_stride,
const uint8_t *__restrict__ const w, const int w_stride,
const __half *__restrict__ const mx,
const __half *__restrict__ const rx,
const __half *__restrict__ const my,
const __half *__restrict__ const ry,
__half *__restrict__ const y, const int y_stride) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int k = blockIdx.y * blockDim.y + threadIdx.y;
if (i < B && k < M) {
float y_local = 0;
for (int j = 0; j < N; ++j) {
y_local += __half2float(x[i * x_stride + j]) * (
(float(w[j * w_stride + k]) + 0.5f)
* __half2float(rx[k]) * __half2float(ry[j])
+ __half2float(mx[k]) + __half2float(my[j])
);
}
y[i * y_stride + k] = __float2half(y_local);
}
}
template <>
void cuda_mm8_seq<fp16>(int B, int N, int M,
fp16 *x, int x_stride,
uint8_t *w, int w_stride,
fp16 *mx, fp16 *rx,
fp16 *my, fp16 *ry,
fp16 *y, int y_stride) {
dim3 blockSize(1, 128);
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_seq_fp16i8<<<gridSize, blockSize>>>(
B, N, M, cast(x), x_stride, w, w_stride,
cast(mx), cast(rx), cast(my), cast(ry), cast(y), y_stride);
}
#define MM8_ONE_JSPLIT 24
#define MM8_ONE_TILE 1024
__global__ void kernel_mm_one_fp32i8(
const int N, const int M,
const float *__restrict__ const x,
const uint8_t *__restrict__ const w, const int w_stride,
const float *__restrict__ const mx,
const float *__restrict__ const rx,
const float *__restrict__ const my,
const float *__restrict__ const ry,
float *__restrict__ const y) {
const int k = blockIdx.y * blockDim.y + threadIdx.y;
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
if (k < M) {
float y_local = 0;
for (int j = j0; j < j1; ++j) {
y_local += x[j] * (
(float(w[j * w_stride + k]) + 0.5f)
* rx[k] * ry[j] + mx[k] + my[j]
);
}
atomicAdd(&y[k], y_local);
}
}
template <typename F>
void cuda_mm8_one(int N, int M,
F *x,
uint8_t *w, int w_stride,
F *mx, F *rx,
F *my, F *ry,
float *y);
template <>
void cuda_mm8_one<float>(int N, int M,
float *x,
uint8_t *w, int w_stride,
float *mx, float *rx,
float *my, float *ry,
float *y) {
dim3 blockSize(1, MM8_ONE_TILE);
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_one_fp32i8<<<gridSize, blockSize>>>(
N, M, x, w, w_stride,
mx, rx, my, ry, y);
}
__global__ void kernel_mm_one_fp16i8(
const int N, const int M,
const __half *__restrict__ const x,
const uint8_t *__restrict__ const w, const int w_stride,
const __half *__restrict__ const mx,
const __half *__restrict__ const rx,
const __half *__restrict__ const my,
const __half *__restrict__ const ry,
float *__restrict__ const y) {
const int k = blockIdx.y * blockDim.y + threadIdx.y;
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
if (k < M) {
float y_local = 0;
for (int j = j0; j < j1; ++j) {
y_local += __half2float(x[j]) * (
(float(w[j * w_stride + k]) + 0.5f)
* __half2float(rx[k]) * __half2float(ry[j])
+ __half2float(mx[k]) + __half2float(my[j])
);
}
atomicAdd(&y[k], y_local);
}
}
template <>
void cuda_mm8_one<fp16>(int N, int M,
fp16 *x,
uint8_t *w, int w_stride,
fp16 *mx, fp16 *rx,
fp16 *my, fp16 *ry,
float *y) {
dim3 blockSize(1, MM8_ONE_TILE);
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_one_fp16i8<<<gridSize, blockSize>>>(
N, M, cast(x), w, w_stride,
cast(mx), cast(rx), cast(my), cast(ry), y);
}
|