Spaces:
Runtime error
Runtime error
Commit
·
7758cb9
1
Parent(s):
d9a5ffa
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
import os, gc
|
3 |
from datetime import datetime
|
|
|
4 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
5 |
|
6 |
ctx_limit = 3500
|
|
|
7 |
title = "rwkv1b5-vitl336p14-577token_mix665k_rwkv"
|
|
|
8 |
|
9 |
os.environ["RWKV_JIT_ON"] = '1'
|
10 |
os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster)
|
@@ -17,32 +24,22 @@ pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
|
|
17 |
|
18 |
##########################################################################
|
19 |
from modeling import VisualEncoder, EmbeddingMixer, VisualEncoderConfig
|
20 |
-
emb_mixer = EmbeddingMixer(model.w["emb.weight"],
|
|
|
21 |
config = VisualEncoderConfig(n_embd=model.args.n_embd,
|
22 |
-
vision_tower_name=
|
23 |
grid_size=-1)
|
24 |
visual_encoder = VisualEncoder(config)
|
|
|
25 |
##########################################################################
|
26 |
-
def generate_prompt(instruction
|
27 |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
28 |
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
|
29 |
-
|
30 |
-
return f"""Instruction: {instruction}
|
31 |
-
|
32 |
-
Input: {input}
|
33 |
-
|
34 |
-
Response:"""
|
35 |
-
else:
|
36 |
-
return f"""User: hi
|
37 |
-
|
38 |
-
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
Assistant:"""
|
43 |
-
|
44 |
-
def evaluate(
|
45 |
ctx,
|
|
|
46 |
token_count=200,
|
47 |
temperature=1.0,
|
48 |
top_p=0.7,
|
@@ -61,7 +58,11 @@ def evaluate(
|
|
61 |
occurrence = {}
|
62 |
state = None
|
63 |
for i in range(int(token_count)):
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
for n in occurrence:
|
66 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
67 |
|
@@ -101,8 +102,13 @@ examples = [
|
|
101 |
]
|
102 |
]
|
103 |
def test(image, question):
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
106 |
demo = gr.Interface(fn=test,
|
107 |
inputs=[gr.Image(type='pil'), "text"],
|
108 |
outputs="text",
|
|
|
1 |
import gradio as gr
|
2 |
import os, gc
|
3 |
from datetime import datetime
|
4 |
+
from transformers import CLIPImageProcessor
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
+
from typing import List, Dict
|
7 |
+
from dataclasses import dataclass
|
8 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
9 |
+
|
10 |
|
11 |
ctx_limit = 3500
|
12 |
+
num_image_embeddings = 4096
|
13 |
title = "rwkv1b5-vitl336p14-577token_mix665k_rwkv"
|
14 |
+
vision_tower_name = 'openai/clip-vit-large-patch14-336'
|
15 |
|
16 |
os.environ["RWKV_JIT_ON"] = '1'
|
17 |
os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster)
|
|
|
24 |
|
25 |
##########################################################################
|
26 |
from modeling import VisualEncoder, EmbeddingMixer, VisualEncoderConfig
|
27 |
+
emb_mixer = EmbeddingMixer(model.w["emb.weight"],
|
28 |
+
num_image_embeddings=num_image_embeddings)
|
29 |
config = VisualEncoderConfig(n_embd=model.args.n_embd,
|
30 |
+
vision_tower_name=vision_tower_name,
|
31 |
grid_size=-1)
|
32 |
visual_encoder = VisualEncoder(config)
|
33 |
+
image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name)
|
34 |
##########################################################################
|
35 |
+
def generate_prompt(instruction):
|
36 |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
37 |
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
|
38 |
+
return f"\n{instruction}\n\nAssistant:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
def generate(
|
|
|
|
|
|
|
|
|
41 |
ctx,
|
42 |
+
image_ids,
|
43 |
token_count=200,
|
44 |
temperature=1.0,
|
45 |
top_p=0.7,
|
|
|
58 |
occurrence = {}
|
59 |
state = None
|
60 |
for i in range(int(token_count)):
|
61 |
+
if i == 0:
|
62 |
+
input_ids = (image_ids + pipeline.encode(ctx))[-ctx_limit:]
|
63 |
+
else:
|
64 |
+
input_ids = [token]
|
65 |
+
out, state = model.forward(input_ids, state)
|
66 |
for n in occurrence:
|
67 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
68 |
|
|
|
102 |
]
|
103 |
]
|
104 |
def test(image, question):
|
105 |
+
image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values']
|
106 |
+
image_features = visual_encoder.encode_images(image.unsqueeze(0))
|
107 |
+
image_ids = [i for i in range(emb_mixer.image_start_index, emb_mixer.image_start_index + len(image_features))]
|
108 |
+
input_text = generate_prompt(question)
|
109 |
+
for output in generate(input_text, image_ids):
|
110 |
+
yield output
|
111 |
+
|
112 |
demo = gr.Interface(fn=test,
|
113 |
inputs=[gr.Image(type='pil'), "text"],
|
114 |
outputs="text",
|