howard-hou commited on
Commit
c1fe8ee
·
1 Parent(s): 786e086

Delete modeling.py

Browse files
Files changed (1) hide show
  1. modeling.py +0 -75
modeling.py DELETED
@@ -1,75 +0,0 @@
1
- from transformers import CLIPVisionModel
2
- import torch
3
- import torch.nn as nn
4
- import torch.nn.functional as F
5
- from dataclasses import dataclass
6
- from rwkv.model import RWKV
7
-
8
- class UpdatableRWKV(RWKV):
9
- def __init__(self, *args, **kwargs):
10
- super().__init__(*args, **kwargs)
11
-
12
- def update_emb_weight(self, new_value):
13
- self.w.update({"emb.weight", new_value})
14
-
15
- @dataclass
16
- class VisualEncoderConfig:
17
- n_embd: int = 2048
18
- vision_tower_name: str = 'openai/clip-vit-large-patch14-336'
19
- grid_size: int = -1 # -1: no grid pooling, 0: take cls token, 1: global avg pooling, 2, 3, 4, ...: grid pooling
20
-
21
- class VisualEncoder(nn.Module):
22
- def __init__(self, args):
23
- super().__init__()
24
- self.args = args
25
- self.vit = CLIPVisionModel.from_pretrained(args.vision_tower_name)
26
- self.proj = nn.Linear(self.vit.config.hidden_size, args.n_embd, bias=False)
27
-
28
- def encode_images(self, images):
29
- B, N, C, H, W = images.shape
30
- images = images.view(B*N, C, H, W)
31
- image_features = self.vit(images).last_hidden_state
32
- L, D = image_features.shape[1], image_features.shape[2]
33
- # rerange [B*N, L, D] -> [B, N, L, D]
34
- image_features = image_features.view(B, N, L, D)[:, 0, :, :]
35
- image_features = self.grid_pooling(image_features)
36
- return self.proj(image_features)
37
-
38
- def grid_pooling(self, image_features):
39
- if self.args.grid_size == -1: # no grid pooling
40
- return image_features
41
- if self.args.grid_size == 0: # take cls token
42
- return image_features[:, 0:1, :]
43
- if self.args.grid_size == 1: # global avg pooling
44
- return image_features.mean(dim=1, keepdim=True)
45
- cls_features = image_features[:, 0:1, :]
46
- image_features = image_features[:, 1:, :] #drop cls token
47
- B, L, D = image_features.shape
48
- H_or_W = int(L**0.5)
49
- image_features = image_features.view(B, H_or_W, H_or_W, D)
50
- grid_stride = H_or_W // self.args.grid_size
51
- image_features = F.avg_pool2d(image_features.permute(0, 3, 1, 2),
52
- padding=0,
53
- kernel_size=grid_stride,
54
- stride=grid_stride)
55
- image_features = image_features.permute(0, 2, 3, 1).view(B, -1, D)
56
- return torch.cat((cls_features, image_features), dim=1)
57
-
58
-
59
- class EmbeddingMixer(nn.Module):
60
- def __init__(self, original_embedding, num_image_embeddings=4096):
61
- super().__init__()
62
- image_embedding = torch.zeros(num_image_embeddings,
63
- original_embedding.shape[1],
64
- device=original_embedding.device,
65
- dtype=original_embedding.dtype)
66
- self.embedding = torch.cat((original_embedding, image_embedding), dim=0)
67
- self.image_start_index = len(original_embedding)
68
-
69
- def set_image_embeddings(self, image_embeddings):
70
- assert len(image_embeddings.shape) == 2, "image_embeddings should be 2D"
71
- end_index = self.image_start_index + image_embeddings.shape[0]
72
- self.embedding[self.image_start_index:end_index] = image_embeddings
73
-
74
- def get_input_embeddings(self):
75
- return self.embedding