howard-hou commited on
Commit
ccbfd85
·
1 Parent(s): b2806b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -6
app.py CHANGED
@@ -14,14 +14,13 @@ vision_tower_name = 'openai/clip-vit-large-patch14-336'
14
  os.environ["RWKV_JIT_ON"] = '1'
15
  os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster)
16
 
17
- from rwkv.model import RWKV
18
  model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=f"{title}.pth")
19
- model = RWKV(model=model_path, strategy='cpu fp32')
20
  from rwkv.utils import PIPELINE, PIPELINE_ARGS
21
  pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
22
 
23
  ##########################################################################
24
- from modeling import VisualEncoder, EmbeddingMixer, VisualEncoderConfig
25
  emb_mixer = EmbeddingMixer(model.w["emb.weight"],
26
  num_image_embeddings=num_image_embeddings)
27
  config = VisualEncoderConfig(n_embd=model.args.n_embd,
@@ -102,9 +101,7 @@ def chatbot(image, question):
102
  image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values']
103
  image_features = visual_encoder.encode_images(image.unsqueeze(0))
104
  emb_mixer.set_image_embeddings(image_features.squeeze(0))
105
- global model.w["emb.weight"]
106
- model.w["emb.weight"] = emb_mixer.get_input_embeddings()
107
- print(model.w["emb.weight"].shape)
108
  image_ids = [i for i in range(emb_mixer.image_start_index, emb_mixer.image_start_index + len(image_features))]
109
  input_text = generate_prompt(question)
110
  for output in generate(input_text, image_ids):
 
14
  os.environ["RWKV_JIT_ON"] = '1'
15
  os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster)
16
 
17
+ from modeling import UpdatableRWKV, VisualEncoder, EmbeddingMixer, VisualEncoderConfig
18
  model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=f"{title}.pth")
19
+ model = UpdatableRWKV(model=model_path, strategy='cpu fp32')
20
  from rwkv.utils import PIPELINE, PIPELINE_ARGS
21
  pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
22
 
23
  ##########################################################################
 
24
  emb_mixer = EmbeddingMixer(model.w["emb.weight"],
25
  num_image_embeddings=num_image_embeddings)
26
  config = VisualEncoderConfig(n_embd=model.args.n_embd,
 
101
  image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values']
102
  image_features = visual_encoder.encode_images(image.unsqueeze(0))
103
  emb_mixer.set_image_embeddings(image_features.squeeze(0))
104
+ model.update_emb_weight(emb_mixer.get_input_embeddings())
 
 
105
  image_ids = [i for i in range(emb_mixer.image_start_index, emb_mixer.image_start_index + len(image_features))]
106
  input_text = generate_prompt(question)
107
  for output in generate(input_text, image_ids):